Система управления микроклиматом помещений внутри здания

 

Система управления микроклиматом помещений внутри зданий направлена на регулирование климатом внутри здания, повышение или понижение температуры, повышение точности регулирования микроклимата помещений внутри здания и, как следствие, снижение затрат электрической энергии, за счет того, что система содержит нагреватель, охладитель, вентилятор подачи воздуха, нечеткого контроллера, вход. которого соединен с выходом мультиплексора, а выход соединен с охладителем, нагревателем и вентилятором, причем вентилятор выполнен регулируемым, а нечеткий контроллер выполнен с возможностью управления микроклиматом внутри здания по тридцати шести правилам для каждого выхода, составленных на основе экспертных данных.

Полезная модель относится к области регулирования температуры и влажности в помещении, в частности для централизованного использования в больших зданиях и сооружениях.

Известна система, действие которой основано на применении нечеткого регулирования в системе отопления, вентиляции и кондиционирования (ОВК). Система управления состоит из двух групп датчиков температуры, влажности, кислорода и частиц пыли внутри помещения, двух групп двигателей кондиционера и вытяжной вентиляции, блока фаззификации, блока нечеткой логики с блоком базы правил, блока дефаззификации. Действие регулятора основано на том, что по разнице между температурой и влажностью внутри помещения и снаружи, а так же по качеству воздуха внутри помещения - содержание кислорода и пыли принимается решение, основанное на базе правил по управлению приводами кондиционера и вытяжной вентиляции. Система имеет четыре входа и два выхода. Эта система описана в работе FUZZY EXPERT SYSTEM DESIGN FOR OPERATING ROOM AIRCONDITION CONTROL SYSTEMS, Ismail Saritas, Nazmi Etik, Novruz Allahverdi, Ibrahim Unal Sert, International Conference on Computer Systems and Technologies - CompSysTech' 07 pp. IIIA.1-1 - IIIA.1-8

Недостатком этой системы является излишняя сложность, наличие более чем одного входа и одного выхода, отсутствие регулирования мощности вентилятора.

Наиболее близкой по технической сущности и достигаемому результату к заявленной системе является система управления, взятая за прототип, состоящая из датчиков температуры и влажности, двух блоков фаззификации - для температуры и для влажности, нечеткого блока с базой правил, трех блоков дефаззификации - для нагревателя, охладителя и увлажнителя. Вся система охвачена отрицательной обратной связью. Работа системы управления климатом помещения происходит в двух различных режимах, первый режим - режим с нечетким П-контроллером, второй режим - режим с нечетким ПИ-контроллером. Данная система управления описана в работе Fuzzy Logic Control of Building Management Systems, G.S.Virk, A.B.Ghazali and D.Azzi, UKACC International Conference on CONTROL'96, 2-5 September 1996, Conference Publication No.427©IEE 1996 pp.580-585.

Недостатками данной системы управления являются то, что и системе не предусмотрена регулировка мощности вентилятора, приводящая к чрезмерному расходованию энергии и отсутствует математическая модель здания.

Задача полезной модели - регулирование климатом внутри здания, повышение или понижение температуры, повышение точности регулирования микроклимата помещений внутри здания и, как следствие, снижение затрат электрической энергии, за счет эффективного проектирования ОВК для конкретного объекта. При этом система управления энергоснабжением здания приобретает признаки искусственного интеллекта. С помощью искусственного интеллекта система способна оценивать, диагностировать и предлагать оптимальный режим работы оборудования. Таким образом, использование управляющих контроллеров систем ОВК, построенных на принципах нечеткой логики, приводит к значительной экономии электроэнергии.

Поставленная задача решается тем, что в системе управления микроклиматом помещений внутри здания, состоящей из нагревателя, охладителя, вентилятора подачи воздуха, нечеткого контроллера, вход нечеткого контроллера соединен с выходом мультиплексора, а выход соединен с охладителем, нагревателем, вентилятором, причем вентилятор выполнен регулируемым, а нечеткий контроллер выполнен с возможностью управления микроклиматом внутри здания по тридцати шести правилам для каждого выхода, составленных на основе экспертных данных, причем правила построены так что заданное множество дискретных величин разбито на положительные и отрицательные подмножества для обогрева и охлаждения, соответственно.

На фиг.1 представлена общая структура системы управления климатом внутри здания.

На фиг.2 представлены лингвистические переменные и функции принадлежности «температурная ошибка».

На фиг.3 представлены лингвистические переменные и функции принадлежности «ошибка перепада температуры».

На фиг.4 представлены лингвистические переменные и функции принадлежности «напева и охлаждения».

На фиг.5 представлены значения лингвистические переменные и функции принадлежности скорости вентилятора.

На фиг.6 представлена база правил для скорости вентилятора.

Система управления состоит из блоков - охладителя 1, нагревателя 2, регулируемого вентилятора 3, обеспечивающего подачу воздуха, нечеткого контроллера 4, вход которого соединен с выходом блока мультиплексирования 5, а выход соединен с блоками - охладителя 1, нагревателя 2 и регулируемым вентилятором 3, датчика температуры 6, расположенного в зоне регулирования 7. Выходы 8, 9, 10 блоков соответственно - охладителя 1, нагревателя 2 и регулируемого вентилятора 3 соединены с зоной регулирования 7 и осциллографами 11 и 12. Переключатель 13 блока охладителя 1 и переключатель 14 блока нагревателя 2 предназначены для переключения режимов работы блока охладителя 1 и блока нагревателя 2. Блок мультиплексирования 15 соединен с блоком осциллографа 16. Блок осциллографа 17 с выходом сумматора 18. Входы мультиплексора 5 соединены с выходом 19 дифференциатора 20 и выходом 21 сумматора 22. Выходы 23, 24, 25 нечеткого контроллера 4 соединены с блоками охлаждения 1, регулируемого вентилятора 3 и нагревания 2. Переключатель 13 имеет входы 26, 27 и 28. Переключатель 14 имеет входы 29, 30 и 31.

Работа системы управления климатом внутри здания производится следующим образом.

Воздух из атмосферы поступает через блоки охладителя 1, нагревателя 2 и регулируемого вентилятора 3 и подается в зону регулирования 7. Качество воздуха обеспечивается нечетким контроллером 4 и контролируется датчиками температуры 6.

Сигнал ошибки температуры на выходе 21 сумматора 22 получается путем вычитания в сумматоре 22 сигнала датчика температуры 6 и величины заданной температуры. Далее сигнал ошибки температуры с выхода 21 поступает на блок вычисления первой производной дифференциатора 20 и напрямую в блоки мультиплексирования 5 и 15. Выход 19 блока вычисления первой производной дифференциатора 20 поступает на вход блока мультиплексирования 5. С блока мультиплексирования 5 сигнал поступает на нечеткий контроллер 4, после обработки и демультиплексирования соответственно сигналы с выходов 23, 24 и 25 поступают в блок охлаждения 1, блок регулируемого вентилятора 3 и блок нагревателя 2.

Блоки охладителя 1 и нагревателя 2 по величине заданного порога определяют, какие лингвистические переменные для нагрева или охлаждения посылаются из нечеткого контроллера 4 за определенный промежуток времени. Дискретные сигналы с выходов 8, 9 и 10 также идут на осциллографы 11 и 12, которые отражают состояние переменных во время работы.

Переключатель 13 блока охладителя 1 служит для включения и выключения охлаждения но заданному пороговому значению, а переключатель 14 блока нагревателя 2 - для включения и выключения нагревания по заданному пороговому значению. Если величина сигнала на центральном уровне (пороговый вход 27) переключателя 13 блока охладителя 1 выше заданной величины, то переключатель посылает сигнал на верхнюю линию (вход 26), и, если сигнал ниже заданной величины, или равен ей - на нижнюю линию (вход 28). Если величина сигнала на центральном уровне (пороговом входе 30) переключателя 14 блока нагревателя 2 выше заданной величины или равна ей, то переключатель посылает сигнал на верхнюю линию (вход 29), и, если сигнал ниже заданной величины - на нижнюю линию (вход 31). Таким образом, мы разбиваем заданное множество дискретных величин на положительные и отрицательные подмножества для обогрева и охлаждения, соответственно.

Работа системы состоит в определении значения температуры, соответствующей управляющему воздействию на цифро-аналоговом преобразователе контроллера, по следующим входным переменным: е (разница между заданной и текущей температурой), e (первая производная изменения температуры за время вычислительного цикла).

e(t)=Тзад(t)-Ттек (t),

где Tзад - заданная температура, °С; Tтек - текущая температура, °С.

Скорость изменения температуры:

e=[e(t)-e(t-1)]/[t-(t-1)]

где t - текущее значение времени измерения, c.

Определим для нечетких лингвистических переменных e, e нечеткие множества с соответствующими идентификаторами для функций принадлежности µ(e), µ(e). Построим две функции принадлежности. В одном случае аргументом является разность температур (e) (фиг.2), а во втором - скорость изменения температуры (e) (фиг.3). Для первой функции диапазон температур составляет от -6 до 8°С, для второй от -6 до 8°С/мин.

Для µ(e), µ(e) (фиг.2-3) эти идентификаторы имеют вид: «отклонение положительное большое» (РВ), «отклонение положительное среднее» (РМ), «отклонение положительное малое» (PS), «отклонение пулевое» (Z), «отклонение отрицательное среднее» (NS), отклонение отрицательное большое» (NB).

Сигнал датчика температуры 6 поступает в сумматор 22 где вычитается из заданной температуры. Полученный сигнал ошибки 21 поступает на вход блока мультиплексирования 5 и блок вычисления первой производной дифференциатора 20. Далее сигнал первой производной ошибки температуры с выхода 19 дифференцирующего блока 20 также поступает на вход блока мультиплексирования 5. Выход блока мультиплексирования 5 соединен с входом нечеткого контроллера 4.

Результат совместного влияния двух функций принадлежности на значение выходного параметра определяется соответствующей программой, заложенной в логическое устройство.

С помощью функции принадлежности (фиг.5) задастся требуемый режим работы системы нагрева и охлаждения µ(p). Нечеткие переменные, именуются как «сильное охлаждение» (С3), «среднее охлаждение» (С2), «малое охлаждение» (С1), «без изменений» (NO), «нагрев1» (H1), «нагрев2» (H2). Подобным способом вычисляется также скорость вращения вентилятора на основе базы правил для скорости вентилятора µ(fs) (рис.4). Нечеткие переменные, соответствующие скорости вентилятора, именуются как «высокая» (Fast),«нормальная» (Med), «низкая» (Low), «нулевая» (Z).

Функция принадлежности на выходе (фиг.5) показывает процесс обработки правил, суммируя ответный сигнал для обеспечения выходной команды. Выбранная в данной работе функция принадлежности на выходе состоит из двух уровней нагрева (H1, H2), трех уровней охлаждения (C1, C2, С3) и уровня нормы (NO), что можно представить, например, как несколько разных дополнительных уровней нагрева или охлаждения, причем значение H2 больше чем значение H1, а С3 больше чем значение С2 и C1.

Правила, перечисленные в фиг.6, показывают как применяются лингвистические переменные, полученные путем фаззификации для суммирования ответного сигнала с использованием интуиции оператора. При соединении с выходной функцией принадлежности и соответствующей дефаззификации получаем четкую реакцию на управляющее воздействие.

В данном случае сигнал управления будет уровнем нагрева или охлаждения из данных [-2, -1, 0, 1,, 6].

Связь между входом и выходом занесем в таблицу нечетких правил (фиг.6). Каждая запись соответствует своему нечеткому правилу.

Одним из главных аргументов в пользу регулирования на основе нечеткой логики является то, что она опирается на опыт человека и не нуждается в точной настройке внутренних параметров. Даже при значительном изменении подлежащих регулировке параметров рабочий режим регулирования на базе нечеткой логики остается устойчивым и не дает больших отклонений от оптимальной настройки. Это оправдывает утверждение, что регулирование на основе нечеткой логики надежно по характеру при условии, что его правила и параметры рассчитаны настоящими экспертами в данной области. Кроме того, регулирование обладает более высоким быстродействием по сравнению с ПИД-регулированием и обеспечивает экономию энергии в системе кондиционирования. Это достигается благодаря внедрению экспертных правил.

Система управления микроклиматом помещений внутри здания содержит блоки - нагревателя, охладителя, вентилятора подачи воздуха, нечеткий контроллер, вход которого соединен с выходом блока мультиплексирования, а выход соединен с блоками охладителя, нагревателя и вентилятора, отличающаяся тем, что блок вентилятора выполнен регулируемым, а нечеткий контроллер выполнен с возможностью управления микроклиматом внутри здания по тридцати шести правилам для каждого выхода, составленных на основе экспертных данных, причем правила построены так, что заданное множество дискретных величин разбито на положительные и отрицательные подмножества для обогрева и охлаждения соответственно.



 

Похожие патенты:

Система оборудования для вентиляции, управления и поддержания микроклимата относится к области сельского и лесного хозяйства, а именно к лесоразведению, плодоводству и может быть использована в теплице и других производственных помещениях при выращивании лесных и плодовых культур медленнорастущих пород.

Изобретение относится к железнодорожному транспорту, а именно к конструкции систем водоснабжения пассажирских вагонов

Полезная модель относится к медицине, а именно, к перевязочным материалам, и может быть использовано для лечения ожогов и ран
Наверх