Трубопроводная система и устройство для транспортировки потока многофазной жидкости

 

Устройство относится к средствам добычи и транспортировки углеводородов от скважины к пунктам накопления. Трубопроводная система содержит две ветви, одна из которых является трубой с открытым концом и сопряжена с устьем скважины посредством манифольда, а вторая ветвь установлена параллельно первой ветви на восходящей части ее длины, и соединена с первой ветвью одним концом, образуя параллельные каналы для транспортировки жидкости к накопителю, или двумя концами с образованием закмкнутого контура для установки на трубопроводах, проложенных по холмистой местности. Трубопровод второй ветви выполнен их эластомера путем экструзии и имеет вид трубчатого корпуса, в котором размещено множество труб меньшего диаметра, обеспечивающих выравнивание скорости распространения потока газовой и жидкостной фаз флюида. Клапанные средства управления, установленные в трубопроводах каждой ветви на входе и выходе потока, обеспечивают заданный режим пропускания потока. Технический результат состоит в выравнивании скорости добычи углеводородов во времени, уменьшении или предотвращении появления жидкостных пробок в трубопроводе и отложений на его стенках. Обеспечено проведение работ по обслуживанию трубопроводной системы через какую-либо из труб без остановки производственного цикла.

2 н.п. ф-лы 12 з.п. ф-лы 12 илл.

Полезная модель относится к нефтегазовому оборудованию и может быть использована в составе трубопроводных систем при оборудовании добывающих нефтегазовых скважин.

Известно, что добываемые жидкие углеводороды представляют собой многокомпонентные смеси, включающие фракции различной плотности и вязкости (нефть, газ, вода, парафины, битумы, песок и др.). Соотношения между компонентами смеси определяет режимы течения флюидов - многофазных потоков - по трубопроводам, а также влияет на состояние самих трубопроводных систем вследствие их зарастания отложениями, что приводит к флуктуациям давления /US 4179332/ и нестабильным объемам добычи нефти и газа, требует периодической очистки трубопроводов и в итоге отражается на стоимости целевого продукта.

Транспортировка добываемых флюидов производится посредством трубопроводной системы, составленную обычно из нескольких устройств для транспортировки потоков добываемой жидкости - райзеров - стальных или пластиковых труб диаметром 400-500 мм, которыми наземные пункты или морские платформы с оборудованием соединены через манифольдные линии с оборудованием устья скважины и используются для гидравлического управления скважиной, отвода бурового раствора на регенерацию и очистку и др..

Известна конструкция трубопроводной системы для транспортировки углеводородов, включающей трубчатый корпус большого диаметра с открытыми концами (райзер), один из которых соединен с манифольдом, а другой - с накопителем жидких углеводородов, извлеченных из пласта через устье скважины каким-либо способом (обводнение пласта, газовое давление на него, применение насосов) /www.rayzery-vodootdelyayuschie-kolonny.htm/. Недостатком известной конструкции является ограниченность эксплуатационных характеристик, т.к. при прокачке добываемых флюидов происходит расслоение многокомпонентной смеси по скорости течения компонент вследствие различной вязкости, что приводит к неоднородному флуктуирующему составу поступающей на сепараторы жидкости. Помимо этого в трубопроводах достаточно большого диаметра происходит образование газовых пузырей (газовых шапок) в вязкой нефтяной оболочке, которые способны запереть поток нефти. Известно, что характерный размер газового пузыря - его диаметр - может быть сравним с диаметром трубы, он образуется из-за слияния более мелких пузырей в процессе течения флюида по трубе, и при повышенных температурах в трубе и снижении гидростатического давления в ходе подъема вверх от скважины пузырь расширяется. При достаточно большом давлении внутри газового пузыря и его схлопывании в такой трубе происходит выброс жидкой компоненты, включающей более вязкие, чем собственно нефть, примеси, оседающие на стенках трубы и постепенно обрастающие другими наносами. Недостатком известного устройства является ограниченность эксплуатационных характеристик, поскольку при ремонте или техобслуживании трубопровода - его очистки существующими методами (скребки, полив горячей нефтью или др.), извлечения отдельных предметов - его необходимо целиком вывести из производственного цикла. Вместе с тем, осаждение и накопление относительно тяжелых примесей на стенках трубы может произойти практически в любом трубопроводе вблизи линии сгиба или перегиба его корпуса на восходящем его участке, что наблюдается в трубопроводах изогнутой или ломаной структуры (гибкие и цепные райзеры), в трубопроводах, проложенных по пересеченной местности, или деформируемых под действием внешних сил (трубопроводы для морской нефтедобычи) (фиг.1). Известные технические средства, применяемые для транспортировки многофазных (вязких) жидкостей, используют нагрев текучей среды (RU 78181) или регулирование вязкости жидкости (RU 111245), что является весьма затратными приемами. Заявляемая конструкция позволяет осуществлять прокачку потоков многофазных жидкостей без существенных флуктуаций принимаемого потока с одновременным уменьшением или исключением образования наносов на стенках трубопровода.

Известны физические особенности течения многофазных (двухфазных) жидкостей в узких трубах /патенте США 5950651 «Способ и устройство для транспортировки многофазных потоков»/, в соответствии с которыми при делении потока в трубопроводе на множество потоков с меньшим поперечным сечением уменьшается вероятность проскальзывания газовой фазы относительно жидкой фазы, что приводит к возрастанию переноса энергии от газовой фазы к жидкости и уменьшению соотношения газ-жидкость в потоке и выравниванию объемов пропускаемой жидкости в разные моменты времени. Применительно к райзерам при движении через маленькие трубы (диаметром 6-25 мм вместо обычно используемых труб диаметром 10-15 см) поток переходит в режим кольцевого течения в направлении вершины колонны и на значительном протяжении ее длины. Содержание газа в потоке увеличивается по мере выхода из раствора при подъеме, возрастании расстояния от пласта и понижении давления, а газовая фаза, распространяясь в сторону уменьшения давления, приводит к образованию кольцевого потока жидкости. Поэтому объединенный поток на выходе имеет стационарную природу. Поскольку между длиной жидкостной пробки и диаметром трубопровода существует высокая корреляция, в трубопроводах с меньшим поперечным сечением образуются более короткие жидкостные пробки, что дает меньшие в среднем соотношения длина/масса для каждой пробки. Жидкостные пробки с меньшим размером, распространяясь через систему параллельных маленьких труб, поступают к подводному или наземному оборудованию независимо. Увеличение количества независимых потоков приводит к росту тенденции статистического усреднения величины соотношения объем/масса в потоке через трубопровод в любой заданный момент времени. Также уменьшается вероятность попадания какой-либо одиночной жидкостной пробки в перерабатывающее оборудование, и, следовательно, угроза повреждения средств обработки (сепараторы, пробкоуловители, трубопроводы, и пр.) не возникает.

Известно устройство для транспортировки многофазного потока, в котором учтены гидродинамические особенности потоков многофазных сред в круглых трубах и изменение режимов течения в зависимости от размеров поперечного сечения трубы /US 5950651/. Устройство содержит внешний корпус - трубу, имеющую вход и выход для пропускания потока многофазной жидкости, средства для разделения потока многофазной жидкости на множество отдельных потоков многофазной жидкости, текущих одновременно в направлении от входа трубы к ее выходу, и средства для объединения множества отдельных потоков многофазной жидкости в один общий поток до выхода его из трубы. При этом средства разделения потока многофазной жидкости на отдельные потоки представляют собой отдельные каналы для пропускания многофазной жидкости - полые трубки, установленные во внешнем корпусе - трубе - с зазором между собой или без зазора и, преимущественно, параллельно в направлении от входа к выходу трубы, занимая, по меньшей мере, часть ее объема. Такие каналы допускают также размещение оснастки райзера - электрических кабелей и т.п. Сечение таких каналов может быть выбрано круглым, или некруглым (например, гексагональным и др.), причем форма поперечного сечения каналов и число каналов на разных участках трубы могут быть изменены по ходу движения потока в зависимости от технической задачи. Техническим результатом деления потока многофазной жидкости на отдельные потоки является уменьшение разности скоростей движения легких (газ) и тяжелых (нефть) фракций, что уменьшает флуктуации объема целевого продукта на входе приемного оборудования, а также предотвращает возникновение застоя тяжелых фракций в нижней части трубы и по ходу движения потока.

Известная трубопроводная система для транспортировки потока многофазной жидкости преимущественно, от устья скважины к пункту приема, включающая трубопровод с открытым концом, сопряженный посредством манифольда с устьем скважины и включающий каналы для пропускания потока жидкости и проводки штатных устройств обслуживания, клапанные средства управления, выбрана в качестве наиболее близкого аналога заявляемой полезной модели.

Известное устройство для транспортировки потока многофазной жидкости (райзер), включающее внешний трубчатый корпус и выполненные в нем каналы для пропускания многофазной жидкости, выполненные в виде труб меньшего поперечного сечения и размещенные вдоль оси внешнего трубчатого корпуса, выбрано в качестве наиболее близкого аналога заявляемой полезной модели.

Задача полезной модели заключается в улучшении эксплуатационных характеристик трубопроводных систем, преимущественно, для углеводородов, за счет обеспечения оптимального режима течения потоков многофазных жидкостей для получения очищенных от примесей потоков углеводородов, преимущественно, на входе в линии транспортировки жидкости, повышения добычи целевого продукта, обеспечения обслуживания без остановки производственного процесса.

Задача решена тем, что трубопроводная система для транспортировки потока многофазных жидкостей, преимущественно, от устья скважины к пункту приема, включающая трубопровод с открытым концом, сопряженный посредством манифольда с устьем скважины и включающий каналы для пропускания потока жидкости и проводки штатных устройств обслуживания, клапанные средства управления, в соответствии с полезной моделью, снабжено устройством для транспортировки потока многофазной жидкости, которое выполнено трубчатым и присоединено к трубопроводу с открытым концом по крайней мере, в одной точке, с образованием соответственно двух ветвей трубопроводной системы, параллельных, по крайней мере на части трубопроводной системы, при этом первая ветвь образована трубопроводом с открытым концом, а вторая ветвь - устройством для транспортировки потока многофазной жидкости, вторая ветвь трубопровода расположена вдоль восходящей части первой ветви трубопровода, при этом в обеих ветвях трубопроводной системы установлены клапанные средства управления для перекрытия входящего в них и выходящего потока,

Кроме того, трубопроводная система снабжена средствами перемешивания флюида перед подачей потока во вторую ветвь.

Кроме того, трубопроводная система включает средства обратного давления на флюид.

Кроме того, трубопровод первой ветви выполнен в виде жесткой трубы.

Кроме того, трубопровод первой ветви выполнен в виде сплошной гибкой трубы, например, армированной.

Кроме того, трубопровод первой ветви выполнен в виде цепного райзера.

Кроме того, трубопровод второй ветви выполнен в виде совокупности отрезков труб, последовательно сочлененных гибкими соединениями.

Задача решена тем, что в устройстве для транспортировки потока многофазной жидкости, включающее внешний трубчатый корпус и размещенные в трубчатом корпусе каналы для пропускания потока многофазной жидкости и размещения оснастки, выполненные в виде труб меньшего поперечного сечения и размещенные вдоль оси трубчатого корпуса, в соответствии с полезной моделью, трубчатый корпус и размещенными в нем трубы меньшего поперечного сечения выполнены из эластомерного материала путем экструзии, трубы меньшего поперечного сечения имеют индивидуальную или идентичную форму, а в промежутках между ними в трубчатом корпусе размещен наполнитель.

Кроме того, устройство снабжено нагревательными элементами, размещенными внутри трубчатого корпуса.

Кроме того, трубы меньшего поперечного сечения выполнены, по крайней мере, частично, с разными поперечными сечениями.

Кроме того, трубы меньшего поперечного сечения имеют круглое поперечное сечение.

Кроме того, трубы меньшего поперечного сечения сгруппированы в кластеры, заключенные в трубчатый корпус, и снабжены изоляцией в пределах кластера.

Кроме того, трубчатый корпус в сборе с размещенными в нем трубами меньшего поперечного сечения выполнен кусочно-непрерывным, с обеспечением связи между частями трубчатого корпуса посредством кабельных соединений, а между частями труб меньшего поперечного сечения - посредством кабельных вводов.

Сущность полезной модели поясняют фиг.1 - 12, на которых представлены:

фиг.1 - формирование отложений на стенках трубопровода с ломаной структурой,

фиг.2 - флуктуации скорости течения жидкости в вершине трубопровода с открытым концом традиционной конструкции,

фиг.3 - фрагмент трубопроводной системы с двумя параллельными ветвями, сопряженными с устьем скважины,

фиг.4 - фрагмент сопряжения первой и второй ветвей (осевое сечение),

фиг.5 - фрагмент трубопроводной системы с двумя праллельными ветвями (наклонный участок),.

фиг.6 - устройство для пропускания потока многофазной жидкости (поперечное сечение) с круглыми трубами,

фиг.7 - то же, с трубчатыми каналами в составе кластеров,

фиг.8 - то же, с нагревательными элементами,.

фиг.9 - выполнение устройства для транспортировки потока многофазной жидкости в виде экструдированной гибкой трубы с внутренними осевыми каналами,

фиг.10 - трубопроводная система, сопряженная с погружной платформой (плавучий танк),

фиг.11 - трубопроводная система, сопряженная с манифольдом и плавучей платформой,

фиг.12 - присоединение трубопроводной системы к манифольду с линией обслуживания (пиггинг).

Движение транспортируемых потоков углеводородов осуществляется в основном направлении снизу вверх, при этом трасса распространения может отличаться от вертикали (морские трубопроводные системы на основе гибких, цепных и гибридных райзеров, в том числе со знакопеременными нагрузками на элементы райзера под влиянием среды, трубопроводы с ломаной структурой, проложенные по холмистой поверхности).

Трубопроводная система проиллюстрирована случаем морской нефтедобычи (фиг.3), и выполнена следующим образом. Трубопровод с открытой трубой (1) соединен с устьем скважины (2) посредством манифольда (3) и имеет одну точку ветвления, в которой присоединено к трубе (1) дополнительно устройство для транспортировки потока многофазной жидкости (4), с образованием соответственно параллельных первой и второй ветвей трубопроводной системы, которые отводят поток в накопитель (на фиг.3 не показан). В каждой ветви на входе потока установлены клапанные устройства (запорные вентили), соответственно, (5) и (6), управлемые внешним устройством с поверхности, которые обеспечивают поступление транспортируемого потока в какую-либо из ветвей (фиг.4).

Наземный трубопровод, проложенный по холмистой местности (уклон превышает один градус) имеет изломанную структуру трубы (1) для транспортировки жидкости, с восходящими и нисходящими участками. Устройство (4) присоединено к трубопроводу с открытой трубой (1) в пределах восходящего участка ветви (1) в двух точках (фиг.5), и за исключением концевых участков параллельно ей. В этом случае клапанные средства управления (5) и (6) для перекрытием потока на входе в ветви трубопроводной системы дополнены клапанными средствами (7) и (8) на выходе потока из трубопроводов обеих ветвей, что позволяет своевременно управлять характеристиками транспортируемого потока, объемом добычи, осуществлять очистку или ремонт ветви трубопроводной системы без остановки добычи и ее перекачки. В качестве клапанных средств управления (5) могут быть использованиы применяемые в нефтедобыче запорный вентиль для труб малого диаметра, шланговый клапан с электроприводом для вязких и агрессивных сред, которые характеризуются, в частности, легким управлением перекрытия канала.

Устройство для транспортировки потока многофазной жидкости (углеводороды) (4) выполнено в виде внешнего трубчатого корпуса (9), внутри которого установлены трубы меньшего диаметра (10), преимущественно, круглого сечения (фиг.6). Внешний трубчатый корпус (9) может быть выполнен как несвязанная гибкая труба, включающая трубы (10), которые образуют каналы для пропускания потока многофазной жидкости и размещения оснастки, поэтому они могут быть выполнены идентичными или иметь, по крайней мере, частично, различные поперечные сечения. Трубы меньшего диаметра (10) могут быть сгруппированы в изолированные кластеры (11) с индивидуальными для кластера трубчатыми корпусами в пределах внешнего трубчатого корпуса (9) (фиг.7). В корпусе устройства (4) между трубами меньшего диаметра (9) могут быть размещены нагревательные элементы (12), посредством которых осуществляется управление режимами течения многофазной жидкости (фиг.8).

В целях придания устройству (4) лучших эксплуатационных характеристик (химическая стойкость, прочность, механическая гибкость, плавучесть и др.,) корпус (9) выполнен из полимерного материала, например, из термопластика, путем экструзии, при этом также могут быть выполнены трубы меньшего диаметра для пропускания потоков жидкости, параллельные оси трубы (фиг.9), либо экструдированным может быть только внешний трубчатый корпус (8). Путем экструзии может быть выполнена гибкая труба (4) с внутренними осевыми отверстиями, при этом материал трубы вокруг осевых отверстий выполняет функцию трубок меньшего диаметра (10). которые будут каналами для транспортировки потока жидкости. Одновременно достигается изолированность каналов пропускания жидкости, что обеспечивает устойчивость течений при изменении внешних условий, в частности, в райзерах морских систем нефтедобычи, а также придает дополнительную плавучесть райзеру. Изолированность каналов в случае раздельного выполнения корпуса и труб меньшего диаметра может обеспечить также пена. Трубчатый корпус (8) и трубы меньшего диаметра (10) могут выполняться по частям (кусочно-непрерывно), а затем сращиваться до необходимой длины. Сочленение частей трубчатого корпуса (8) и трубок меньшего диаметра (10) производится посредством кабельных соединений известным образом, а трубки (10) - посредством кабельных вводов (на фиг. не показаны), что обеспечивает отдельное управление потоками жидкости в каждой трубке.

Труба с открытым концом (1) отводит добываемую жидкость к пункту обработки (фиг.9), ее конструкция определяется условиями использования - жесткая труба (при наземной добыче или небольших морских глубинах), гибкий, гибридный райзер для глубоководной добычи или для трубопроводов, проложенных по неровной (холмистой) местности.

Устройство используют следующим образом.

Подводные устья скважин обычно имеют, как минимум, два порта, один боковой порт для отвода добытого флюида, а другой порт в верхней части для вертикального доступа во время ремонтных операций, например, с обслуживающих судов. Трубопровод имеет спаренный вертикальный коллектор с гидравлически управляемыми вентилями, обеспечивающими двойной доступ - один для доступа к линии добычи, а второй - к кольцевому каналу.

Трубопроводная система с устройством для транспортировки потоков нефти может быть подключена к добывающей скважине следующим образом.. Как показано на фиг.10, соединительная линия ведет от устья скважины (2) к подводному манифольду (3), в котором поток может быть направлен на вторую ветвь (4) или на первую ветвь (1) с открытой трубой (отходящая линия очистки), существует порт входа устройства очистки, выход которого происходит через трубопровод с открытой трубой (1), и первичный порт ввода линии обратной связи из другой скважины (скважин). Для получения потока флюида однородного состава, поступающего во вторую ветвь трубопроводной системы (4), перед входом в нее может быть установлено устройство перемешивания жидкости (на фиг. не показано). Как показано на фиг.11, устье скважины (2) имеет один порт входа для линии очистки и один боковой порт для пропускания добытых флюидов (и устройства очистки) к манифольду (3), который имеет одну отходящую линию для устройства очистки, одну отходящую линию для трубопроводной системы, одну первичную линию ввода обратной связи. Как показано на фиг.12, устье скважины (2) имеет один порт входа для линии очистки, один отходящий порт для устройства очистки, одну отходящую линию для трубопроводной системы и один первичный порт ввода линии обратной связи. Метанол и другие вещества, замедляющие течение жидкости (битумы, воски и гидраты), при необходимости могут быть введены во флюид в трубопроводную систему в манифольде (3) или в устье скважины (2), или ниже верхней части устройства (4).

Нисходящий поток является управляемым средством дросселирования потока, поступающего на сепаратор, из-за отсутствия необходимости в улавливании пробок или обратной закачке газа в скважину для поддержания пластового давления, что достигается увеличением обратного давления путем увеличения ограничения потока на дроссельной заслонке на поверхности. При задании стационарного потока в заявляемой трубопроводной системе против обычного райзера с открытой трубой (в котором проявляется пробкование), отсутствует необходимость приложения избыточного давления на скважину, поэтому перепад давления в райзере может быть увеличен.

Трубопроводная система с двумя ветвями транспортировки жидкости может оптимизировать использование значительной потенциальной энергии, запасенной в жидкости вблизи нижней части трубопроводной системы, для подъема жидкостной фазы, т.к. при расширении газовой фазы большее количество свободного газа выходит из раствора. Это выгодно как для новой скважины из-за более полного использования доступной потенциальной энергии сжатого/растворенного пластового газа, сохранения пластового газа, так и для старой скважины, поскольку добыча из скважины идет при более низком пластовом давлении, отдача увеличивается, пробкование исключается.

На эффективное течение добытого газожидкостного потока отрицательно влияют два фактора, приводя к более высоким соотношениям «газ - жидкость». Во-первых, наклонное положение, характерное для конструкции цепных райзеров способствует скольжению газа относительно жидкости в режиме стратифицированного потока, такой режим обычно присутствует в трубопроводе вблизи райзера. В случае устройства (4), для которого выбирают диаметр трубок с малыми каналами пропускания около 10-25 мм (для нефтяных скважин) и примерно 20-45 малых труб диаметром 20 мм, заменяющих 15 см-диаметр трубопровода с открытой трубой, неэффективный, прерывистый и потенциально разрушительный режим пробкового течения заменяется стационарным потоком, имеющим более высокую скорость при меньшей рециркуляции жидкости или ее прекращении (фиг.2). При наклонном положении устройства (4) отсутствуют негативные эффекты пробкообразования, как это происходит в цепном райзере и открытой трубе. Во-вторых, внутренняя поверхность гибкого трубопровода обычно является спирально скрученным металлическим каркасом (арматурой), т.е. поверхностью с очень высокой эквивалентной поверхностной жесткостью, которая приводит к образованию вихрей в жидкости и рассеянию энергии. Внутренняя поверхность каналов пропускания в трубах (10), имеющих малый диаметр, выполнена из эластомерного материала, очень гладкого, так что фактор трения можно практически исключить из рассмотрения.

В том случае, когда отдельные труби малого диаметра (10) покрываются отложениями или засоряются наносами, их можно обслуживать с верхней части/ поверхности. Первый вентиль клапанного средства управления (5) у основания должен быть закрыт, добыча может быть продолжена через - трубопровод с открытой трубой (1) без перерыва. Устройство для снятия отложений можно ввести в каждую отдельную трубу малого диаметра (10) в устройстве (4) с поверхности и провести его по всей длине до основания, выталкивая наносную породу через нижнюю оконечность (или выбирая ее на поверхность, если в основании райзера используется устройство, расширяющее диаметр, т.к. при протаскивании устройства по траектории на него воздействуют большие силы, чем при толкании его. Если необходимо соединить множество отдельных отрезков гибкого трубопровода на полную длину, и в некоторых конструкциях устройства может быть много отдельных трубок (более 25), предпочтительно для получающей секции гибкого трубопровода, вводимой вновь после снятия отложений, иметь трубки с гофрированным входом для облегчения ввода устройства для очистки последовательно в каждую трубу. Эффективность транспортировки потока не будет значительно уменьшена только в том случае, если промежуток между граничащими трубами малого диаметра двух соответствующих секций относительно мал, преимущественно, 15-45 см. Полный внутренний диаметр корпуса (9), включающего связку труб (10), должен обеспечивать возможность проведения внутренней обработки труб от одной секции к другой. После разрушения отложений в отдельных трубах жидкостью под высоким давлением, поданной с верхней части устройства, из него выталкивают наносную породу наружу, в поток, поступивший через трубопровод с открытой трубой, и на сепаратор. После того, как все наносы удалены, продукция может быть вновь возвращена в устройство (4) путем открытия первого вентиля у основания и второго вентиля на поверхности с последующим закрытием вентиля в верхней части трубопровода с открытой трубой (1).

Положительный эффект от использования изобретения, а именно, улучшение характеристик двухфазного потока в райзере, был продемонстрирован на выработанной газовой скважине в штате Канзас, США, в 2008 г., где было показано возрастание эффективности переноса энергии от газовой фазы к жидкостной фазе с уменьшением отношения газ-жидкость и поддержание скорости стационарного потока без появления пробок. Длинная круглая вставка, имеющая множество внутренних каналов пропускания малого диаметра (так называемая «многоканальная система» или МКС) была установлена в газовую скважину глубиной 580 м. Добыча газа в скважине снизилась, когда поток стал прерывистым, и снижалась далее за счет избыточного поступления воды, что потребовало пенной обработки для поддержания потока, несмотря на давление в 2 Мпа в закрытом донном отверстии. После установки МКС, открытия скважины и удаления жидкости ежедневная добыча из скважины составила около 550 м3 газа и дополнительно более 350 л воды под давлением в линии 0,30-0,56 Мпа и давлении 2 Мпа в вершине трубы. Установился стационарный поток, в котором давление в линии и давление в трубе, контролируемое дифференциальным датчиком давления, оставалось в пределах 10%-отклонения в течение последующих 6 месяцев и далее. Отрицательные температуры воздуха не оказали влияния на объем добычи. Соленость воды превышала 130000 частиц/миллион в эквиваленте NaCl, но следов отложений или закупоривания не было. После установки системы она далее не обслуживалась. По оценкам пластовое давление для этой газовой скважины должно будет снизиться на 5-10% вследствие установки МКС.

Таким образом, заявляемое устройство, в котором происходит деление потока на потоки меньшего диаметра, установленное параллельно с традиционным райзером с открытой трубой, улучшит динамику газожидкостного потока за счет увеличения эффективности газовой фазы при подъеме добытой жидкости и исключения образования пробок, а также обеспечивается доступ с поверхности для обслуживания и ремонта подводной системы трубопроводов.

1. Трубопроводная система для транспортировки потока многофазной жидкости, преимущественно от устья скважины к пункту приема, включающая трубопровод с открытым концом, сопряженный посредством манифольда с устьем скважины и имеющий каналы для пропускания потока жидкости и проводки штатных устройств обслуживания, клапанные средства управления, отличающаяся тем, что она снабжена устройством для транспортировки потока многофазной жидкости, которое выполнено трубчатым и присоединено к трубопроводу с открытым концом, по крайней мере, в одной точке, с образованием соответственно двух ветвей трубопроводной системы, параллельных, по крайней мере, на части трубопроводной системы, при этом первая ветвь образована трубопроводом с открытым концом, а вторая ветвь - устройством для транспортировки потока многофазной жидкости, вторая ветвь трубопровода расположена вдоль восходящей части первой ветви трубопровода, при этом в обеих ветвях трубопроводной системы установлены клапанные средства управления для перекрытия входящего в них и выходящего потока.

2. Трубопроводная система по п.1, отличающаяся тем, что она снабжена средствами перемешивания флюида перед подачей потока во вторую ветвь.

3. Трубопроводная система по п.1, отличающаяся тем, что она включает средства обратного давления на флюид.

4. Трубопроводная система по п.1, отличающаяся тем, что трубопровод первой ветви выполнен в виде жесткой трубы.

5. Трубопроводная система по п.1, отличающаяся тем, что трубопровод первой ветви выполнен в виде сплошной гибкой трубы, например армированной.

6. Трубопроводная система по п.1, отличающаяся тем, что трубопровод первой ветви выполнен в виде цепного райзера.

7. Трубопроводная система по п.1, отличающаяся тем, что трубопровод второй ветви выполнен в виде совокупности отрезков труб, последовательно сочлененных гибкими соединениями.

8. Устройство для транспортировки потока многофазной жидкости, включающее внешний трубчатый корпус и размещенные в трубчатом корпусе каналы для пропускания потока многофазной жидкости и размещения оснастки, выполненные в виде труб меньшего поперечного сечения и размещенные вдоль оси трубчатого корпуса, в соответствии с полезной моделью, трубчатый корпус и размещенные в нем трубы меньшего поперечного сечения выполнены из эластомерного материала путем экструзии, трубы меньшего поперечного сечения имеют индивидуальную или идентичную форму, а в промежутках между ними в трубчатом корпусе размещен наполнитель.

9. Устройство по п.8, отличающееся тем, что оно снабжено нагревательными элементами, размещенными внутри трубчатого корпуса.

10. Устройство по п.8, отличающееся тем, что трубы меньшего поперечного сечения выполнены, по крайней мере, частично, с разными поперечными сечениями.

11. Устройство по п.8, отличающееся тем, что трубы меньшего поперечного сечения имеют круглое поперечное сечение.

12. Устройство по п.8, отличающееся тем, что трубы меньшего поперечного сечения сгруппированы в кластеры, заключенные в трубчатый корпус, и снабжены изоляцией в пределах кластера.

13. Устройство по п.8, отличающееся тем, что трубчатый корпус в сборе с размещенными в нем трубами меньшего поперечного сечения выполнен кусочно-непрерывным, с обеспечением связи между частями трубчатого корпуса посредством кабельных соединений, а между частями труб меньшего поперечного сечения - посредством кабельных вводов.



 

Похожие патенты:

Изобретение относится к освоению нефтегазоконденсатных месторождений, расположенных в арктических условиях на мелководном шельфе, находящихся в непосредственной близости от береговой линии, частично выходящих на берег или на относительно отдаленном расстоянии, а именно к способам сооружения технологических комплексов

Изобретение относится к теплообменным аппаратам и может быть использовано в энергетике и смежных с ней отраслях промышленности

Морской автономный комплекс для добычи нефти, полупогружная плавучая буровая платформа, морская добычная стойка для откачки нефти, морская ледостойкая плавучая платформа для добычи нефти, ледостойкий плавучий резервуар для сбора и хранения нефти, якорь для плавучих конструкций в море относятся к области освоения подводных жидких и газообразных месторождений, к сооружению технологических комплексов при широком диапазоне внешних условий и характеристик грунтов морского дна.
Наверх