Устройство для определения содержания углерода в углеродистых и легированных сталях

 

Полезная модель относится к области аналитической химии и технической физики, а также к различным областям науки, техники и технологии, где требуется информация о составе исследуемых объектов и в первую очередь при разработке технологии и производстве сталей. Устройство может быть использовано в аналитических и исследовательских лабораториях, выполняющих анализ сталей на рентгеновских спектрометрах, в том числе и определение углерода, поскольку углерод является одним из наиболее важных компонентов сталей и сплавов, определяя многие их физические и эксплуатационные свойства. Техническим результатом заявленной полезной модели является повышение достоверности, надежности и удешевления анализа при определении углерода в сталях.

1 н. п. ф-лы; 3 илл.

Полезная модель относится к области аналитической химии и технической физики, а также к различным областям науки, техники и технологии, где требуется информация о составе исследуемых объектов и в первую очередь при разработке технологии и производстве сталей.

Устройство для определения углерода в сталях может быть использовано в аналитических и исследовательских лабораториях, выполняющих анализ сталей на рентгеновских спектрометрах, в том числе и определение углерода, поскольку углерод является одним из наиболее важных компонентов сталей и сплавов, определяя многие их физические и эксплуатационные свойства. Углерод в основном находится в связанном состоянии в форме карбидов различных элементов - карбида железа Fe3C (цементит), карбида марганца Мn3С, карбидов хрома Сr3С2, Сr5С2, Сr4С и Сr7 С3, карбидов вольфрама WC, W2C, W2 C*3Cr3C и образует кристаллические структуры.

Известны устройства для реализации разных способов определения углерода в сталях: кулонометрический, инфракрасной спектроскопии и газообъемный [1-3]. Однако эти устройства имеют сложную конструкцию, так как требуют специальные емкости сложной формы для предварительного сжигания пробы в токе кислорода при высоких температурах от 1250 до 1700°С. Кроме того, такие устройства небезопасны для исполнителей, которые проводят анализ, так как требуют использование агрессивных химических реактивов.

Известно устройство, всеволновый рентгенофлуоресцентный спектрометр S4 EXPLORER фирмы BRUKER AXS [4], который является наиболее близким к заявленному устройству для реализации рентгеноспектральный способ определения содержания углерода в сталях, и выбранный в качестве прототипа. Известный всеволновый рентгенофлуоресцентный спектрометр содержит рентгеновскую трубку большой мощности, камеру образцов, где размещается исследуемый образец, кристалл-анализатор и детектор рентгеновского излучения; которые расположены в вакуумной камере спектрометра.

Недостатком известного устройства является низкая точность определения углерода, за счет того, что поверхность анализируемого образца, находящегося в вакуумной камере спектрометра, покрывается пленкой вакуумного масла, составляющей которой является углерод. Кроме того, известное устройство имеет высокую стоимость, поскольку реализация рентгенофлуоресцентного определения углерода возможна только на вакуумных спектрометрах с использованием специальных кристаллов-анализаторов - многослойные искусственные структуры (МИС) и проточных пропорциональных счетчиков мягкого рентгеновского излучения (44,792 Å); вследствие чего такие спектрометры являются самыми дорогими на рынке рентгеновской аналитической аппаратуры.

Техническим результатом заявленной полезной модели является повышение достоверности, надежности, точности и удешевления анализа при определении углерода в сталях.

Указанный технический результат достигается тем, что в предлагаемом устройстве для определения углерода в сталях, содержащем высоковольтный источник питания рентгеновской трубки, рентгеновскую трубку, исследуемый образец, камеру спектрометра, кристалл-анализатор, детектор рентгеновского излучения и ПЭВМ, между окном рентгеновской трубки и исследуемым образцом устанавливают фильтр из медной фольги, устанавливают напряжение на аноде рентгеновской трубки и по измеренной интенсивности определяют содержание углерода.

Кроме того, заявленная полезная модель позволяет устранить основные недостатки прототипа за счет выхода излучения с большей глубины, с которой отбирается излучение СuK (5-6 мкм в сталях), а также появившейся возможностью использования более дешевой аппаратуры по сравнению с возможностями прототипа. Вместе с тем, в заявленном изобретении жесткое рентгеновское излучение СuК не зависит от покрывающей поверхность образца пленки вакуумного масла.

Выявленные отличительные признаки в предложенном решении, а также их взаимосвязь, не обнаружены в известных в науке и технике решениях по дату подачи заявки, следовательно, заявленное техническое решение соответствует критерию "существенные отличия".

В рентгеновском кристалл-дифракционном спектрометре «СПЕКТРОСКАН МАКС-GV» угол падения первичного излучения на образец составляет 55°. В первичном излучении рентгеновской трубки БХВ-17 с палладиевым анодом присутствует сильная медная линия, которая отражается от кристаллической структуры стальных образцов и вместе с флуоресцентной линией меди попадает в детектор. При этом линейная зависимость между содержанием меди в образцах и интенсивностью флуоресцентной линией CuK {ICuK(F)} нарушается, поскольку добавляется дополнительная интенсивность от отраженной (дифрагированной) линии меди {I C(D)}, присутствующей в первичном спектре рентгеновской трубки и зависящей от содержания углерода.

Суммарная интенсивность, зарегистрированная в канале меди {I}; образуется от сложения интенсивностей флуоресцентной и отраженной линий CuK и пропорциональна сумме содержаний в образце меди и углерода:

Для разделения этих зависимостей и получения отдельных градуировочных графиков:

и

используется следующий способ:

Для определения меди преобразуется первичный спектр рентгеновской трубки с помощью селективного фильтра, который поглощает излучение медной линии в первичном спектре рентгеновской трубки, в результате чего во вторичном излучении отсутствует интенсивность, возникающая за счет явления дифракции, и наблюдается линейная зависимость интенсивности флуоресцентной линии CuK от содержания меди в исследуемом образце:

.

Для определения углерода необходимо преобразовать первичный спектр рентгеновской трубки так, чтобы атомы меди в исследуемом образце не возбуждались и линия ICuK отсутствовала во флуоресцентном спектре. Для этого проводится монохроматизация первичного спектра рентгеновской трубки с получением излучения, с эффективной длинной волны, энергия которой меньше, чем К-край возбуждения К-серии меди. Это достигается с помощью первичного фильтра (вторичного излучателя), флуоресцентное излучение которого не возбуждает атомы меди, и снижением напряжения на рентгеновской трубке до 20 кВ (необходимо, чтобы исключить возбуждение флуоресцентной линии IСuK тормозным спектром и характеристическими линиями палладия).

В результате этого преобразования первичного спектра во вторичном излучении отсутствует флуоресцентное излучение LCuK и наблюдается линейная зависимость между интенсивностью отраженной от кристаллической структуры образца линии преобразованного первичного спектра и содержанием углерода

.

На фиг.1 показан процесс преобразования первичного спектра рентгеновской трубки:

На фиг.1(a) приведен первичный спектр рентгеновской трубки с палладиевым анодом при напряжении на аноде 40 кВ и с 20% загрязнением первичного спектра линиями CuК и CuK; в спектре присутствуют линии К и L-серии палладия;

На фиг.1(б) приведен спектр рентгеновской трубки с палладиевым анодом при напряжении на аноде 40 кВ и с 20% загрязнением первичного спектра линиями СuК и СuК после прохождения первичного спектра через селективный фильтр (кобальта) толщиной 10 мкм; в спектре присутствуют линии К-серии палладия и линии К-серии кобальта, за счет флуоресценции материала фильтра; линии L-серии палладия практически отсутствуют в преобразованном спектре рентгеновской трубки. В преобразованном спектре отсутствуют линии CuК и CuK, которые поглощаются селективным фильтром.

На фиг.1(в) приведен спектр рентгеновской трубки с палладиевым анодом при напряжении на аноде 20 кВ и с 20% загрязнением первичного спектра линиями CuК и CuK после прохождения первичного спектра через вторичный излучатель (фильтр меди) толщиной 100 мкм; в спектре присутствуют линии К-серии палладия и линии К-серии меди, за счет флуоресценции материала фильтра; линии L-серии палладия практически отсутствуют в преобразованном спектре рентгеновской трубки. Преобразованный спектр не возбуждает флуоресцентное излучение атомов меди в исследуемом образце.

На фиг.2 приведена схема предлагаемого рентгеновского спектрометра.

Спектрометр, приведенный на фиг.2, включает высоковольтный источник питания рентгеновской трубки (1), рентгеновскую трубку (2) с палладиевым анодом, фильтр первичного излучения (3), исследуемый образец (4), камеру спектрометра (5), кристалл-анализатор LiF200 (6), детектор рентгеновского излучения - отпаянный газонаполненный счетчик (7), ПЭВМ (8).

Работа заявленной полезной модели осуществляется следующим образом.

На высоковольтном источнике питания (1) генерируется напряжение 20 кВ и подается на анод рентгеновской трубки (2), на котором возникает первичное рентгеновское излучение. На пути первичного рентгеновского излучения между окном рентгеновской трубки и исследуемым образцом устанавливается фильтр - вторичный излучатель (3), который преобразует первичное рентгеновское излучение в монохроматизированное излучение с длинной волны 1,542 Å. Это монохроматизированное излучение отражается на кристаллических структурах исследуемого образца (4), а также возбуждает флуоресцентное излучение атомов образца, энергия К-края которых меньше, чем энергия монохроматизированного излучения. Отраженное и флуоресцентное излучение попадает в камеру спектрометра (5). В камере спектрометра на кристалле-анализаторе (6) выделяется линия CuK, интенсивность которой регистрируется детектором (7). Зарегистрированный детектором сигнал поступает в ПЭВМ (8), где по интенсивности отраженной линии строят зависимость на стандартных образцах и по ней определяют содержание углерода в исследуемых образцах.

Заявленное устройство по сравнению с прототипом позволяет повысить представительность анализа и точность определения углерода за счет большей глубины выхода излучения (для линии CuK глубина выхода излучения составляет 5-6 мкм) и независимости излучения от загрязнения поверхности исследуемого образца парами вакуумного масла.

Список литературы:

1. ГОСТ 22536.1-88 Сталь углеродистая и чугун нелегированный. Методы определения общего углерода и графита

2. ГОСТ 2604.1-77 Чугун легированный. Методы определения углерода

3. ГОСТ 12344-2003 Стали легированные и высоколегированные. Методы определения углерода

4. Рентгенофлуоресцентный спектрометр S4 EXPLORER фирмы BRUKER AXS. Проспект фирмы http://www.bruker.ru/ (прототип).

Устройство для определения углерода в сталях, содержащее высоковольтный источник питания рентгеновской трубки, рентгеновскую трубку, камеру спектрометра, кристалл-анализатор, детектор рентгеновского излучения и вычислительное устройство, отличающееся тем, что устройство дополнительно содержит вторичный излучатель, выполненный из медной фольги, который установлен со стороны выхода первичного излучения рентгеновской трубки.



 

Похожие патенты:

Изобретение относится к области обогащения полезных ископаемых, а именно, к способам обогащения алмазосодержащей руды с использованием физических эффектов и может быть использовано для контроля процессов обогащения и сепарации
Наверх