Трубный элемент с комбинированной теплоизоляцией в гидрозащитной оболочке

 

Полезная модель относится к теплоэнергетике, в частности к стальным теплогидроизолированным трубным элементам для прокладки надземных теплотрасс, допускающих их эксплуатацию при повышенных температурах теплоносителя (выше 130°С до 200°С). Трубный элемент с комбинированной теплоизоляцией в гидрозащитной оболочке, содержащий стальной трубный элемент, теплоизоляцию и гидрозащитную спиральновитую оболочку из тонколистовой оцинкованной стали. Теплоизоляция выполнена двухслойной, при этом внутренний слой теплоизоляции выполнен толщиной 3,5-5,0 мм и образован жидкокерамическим покрытием, включающим стеклянные микросферы, минеральные наполнители, вспученный перлит, волостанит и связующее - бутадиенстирольный латекс с теплостойкостью 200°С, теплопроводностью при 50°С 0,021 Вт/м°С, а наружный слой теплоизоляции выполнен из жесткого пенополиуретана плотностью 75-80 кг/м 3 и теплопроводностью 0,03 Вт/м°С, причем на внутреннем слое теплоизоляции установлены центрующие кольца, формирующие кольцевой зазор между последним и гидрозащитной спиральновитой оболочкой, который заполнен жестким пенополиуретаном образующим наружный слой теплоизоляции, внутренний слой теплоизоляции нанесен на наружную активную фосфатированную поверхность стального трубного элемента, полученную после очистки от ржавчины, окалины и жировых отложений и одновременной обработки фосфатирующим модификатором с преобразователем ржавчины, а внутренняя поверхность оболочки обработана фосфатирующим модификатором, включающим преобразователь ржавчины и антикоррозионный пленкообразователь. В результате достигается повышение срока службы изделий за счет увеличения адгезионной прочности при сдвиге в осевом и тангенциальном направлениях при обеспечении стойкости комбинированной теплоизоляции к

повышенным температурам теплоносителя (до 200°С) и снижении вероятности протекания коррозионных процессов на поверхности стальных трубных элементов.

Полезная модель относится к теплоэнергетике, в частности к стальным теплогидроизолированным трубным элементам для надземной прокладки теплотрасс, допускающих эксплуатацию при повышенных температурах теплоносителя до 200°С.

В теплогидроизолированных трубных элементах эксплуатирующихся при повышенных температурах теплоносителя (до 200°С) используют комбинированную тепловую изоляцию, поскольку обычные, традиционно принятые материалы и технологии нанесения теплоизоляции, например, из пенополиуретана (ГОСТ 30732 и СТ 4937-001-18929664-04) рассчитаны для постоянной перекачки теплоносителя до 130°С. Использование минеральных теплоизоляционных материалов с теплостойкостью до 400°С из-за высокого значения теплопроводности (0,05-0,07 Вт/м°С) и отсутствие механизированного способа нанесения плотно прилегающей к поверхностям теплоизоляции гидрозащитной оболочки из оцинкованного стального листа и др. проблем приводят к существенному удорожанию продукции и снижению срока эксплуатации продукции. В тоже время жидко-керамические (ЖК) теплоизоляционные материалы с теплостойкостью 200-250°С имеют низкую теплопроводность (0,01-0,02 Вт/м°С), но не могут найти отдельного применения в тепловых сетях (без комбинации с другими теплоизолирующими элементами),из-за набора толщины изоляционного слоя 25-30 мм, при этом каждый слой (в зависимости от состава и рецептуры теплоизоляции) необходимо выполнять толщиной от 0,3-0,4 мм до 1,0-1,5 мм, что больше чем на порядок увеличивает продолжительность процесса и удорожает стоимость продукции.

Известна теплоизолированная труба, содержащая трубу с оболочкой, при этом пространство между трубой и оболочкой заполнено вспененным

теплоизоляционным материалом (см. патент RU №2136495, кл. В 29 С 63/18, 1999).

Недостатком данной трубы является то, что в качестве гидроизоляционной оболочки использована полиэтиленовая труба со значительной толщиной стенки от 5 до 30 мм (в зависимости от диаметра стальной трубы) для обеспечения прочностных характеристик защитной оболочки при транспортировке, монтаже и эксплуатации, что приводит к большому расходу полимерного сырья. Кроме того, как известно, изделия из полиэтиленовых оболочек неустойчивы при эксплуатации под воздействием прямых солнечных лучей длительное время и рассчитаны для прокладки подземных теплотрасс. Поэтому практически во всех странах гидрозащитная изоляция труб из полиэтилена используется для подземной прокладки теплотрасс. Следует также отметить, что адгезионная прочность вспенивающегося пенополиуретана (ППУ) к стенкам полиэтиленовой оболочки низкая и для улучшения этого показателя требуется проведение дополнительного мероприятия. Для этого ее внутреннюю поверхность подвергают специальной обработке коронным разрядом, что приводит к удорожанию продукции.

Наиболее близкой к полезной модели по технической сущности и достигаемому результату является теплогидроизолированная труба, содержащая стальную трубу и охватывающую ее тепловую изоляцию из ППУ в гидрозащитной спиральновитой оболочке из тонколистовой стали (см., патент US №3979818, кл. В 21 D 39/00, 14.09.1976).

Однако вспенивающийся ППУ имеет максимальную теплостойкость 130-135°С и недостаточную адгезию по отношению к стальной оболочке, что снижает прочностные свойства трубного элемента при сдвиге в тангенциальном направлении, и в конечном итоге ведет к снижению срока службы.

Задачей, на решение которой направлена настоящая полезная модель, является повышение срока службы теплогидроизолированных трубных элементов за счет увеличения прочности при сдвиге в осевом и тангенциальном направлениях при обеспечении стойкости комбинированной теплоизоляции к

повышенным температурам теплоносителя (до 200°С) и снижение вероятности протекания коррозионных процессов на поверхностях стальных элементов.

Указанная задача решается за счет того, что трубный элемент с комбинированной теплоизоляцией в гидрозащитной оболочке содержит стальной трубный элемент, теплоизоляцию и гидрозащитную спиральновитую оболочку из тонколистовой оцинкованной стали, теплоизоляция выполнена двухслойной, при этом внутренний слой теплоизоляции выполнен толщиной 3,5-5,0 мм и образован жидкокерамическим покрытием, включающим стеклянные микросферы, минеральные наполнители, вспученный перлит, волостонит и связующее - бутадиенстирольный латекс с теплостойкостью 200°С, теплопроводностью при 50°С 0,021 Вт/м°С, а наружный слой теплоизоляции выполнен из жесткого пенополиуретана плотностью 75-80 кг/м3 и теплопроводностью 0,03 Вт/м°С, причем на внутреннем слое теплоизоляции установлены центрующие кольца, формирующие кольцевой зазор между последним и гидрозащитной спиральновитой оболочкой, который заполнен жестким пенополиуретаном образующим наружный слой теплоизоляции, внутренний слой теплоизоляции нанесен на наружную активную фосфатированную поверхность стального трубного элемента, полученную после очистки от ржавчины, окалины и жировых отложений и одновременной обработки фосфатирующим модификатором с преобразователем ржавчины, а внутренняя поверхность оболочки обработана фосфатирующим модификатором, включающим преобразователь ржавчины и антикоррозионный пленкообразователь.

Выполнение теплоизоляции, как это описано выше, позволяет в заводских условиях формировать комбинированную теплоизоляцию, представляющую собой последовательно нанесенные слои ЖК - теплоизоляции и ППУ - теплоизоляции.

Основной тепловой удар берет на себя первый слой - ЖК - теплоизоляции толщиной 3,5-5,0 мм (в зависимости от цели и назначения трубного

элемента), включающий, как минимум, стеклянные микросферы, минеральные наполнители, вспученный перлит, волостонит и связующее - бутадиен-стирольный латекс.

Экспериментально было установлено, что при температуре теплоносителя 200°С после нанесения первого слоя ЖК - теплоизоляции толщиной 3,5-5,0 мм теплопоглощение материалом достигает 70-75°С, т.е. на поверхности первого слоя температура составляет 125-130°С, что позволяет использовать в качестве второго слоя теплоизоляции ППУ с теплостойкостью 125-135°С.

Максимальная температура эксплуатации ЖК - теплоизоляции составляет 200°С (кратковременно до 250°С).

Между слоями комбинированной изоляции достигается высокая адгезионная прочность, поскольку поверхность обоих изоляционных материалов пористая и происходить проникновение ППУ в поры ЖК - изоляции.

Наружная поверхность стального трубного элемента обработана фосфатирующим модификатором, что позволяет образовать активную фосфатированную поверхность - фосфатирующее покрытие. Затем при необходимости может быть нанесен грунт (например, разбавленный водой ЖК - теплоизоляционный материал или другие грунтовочные составы), что приводит к повышению адгезионной прочности ЖК - теплоизоляции к стальной трубе и гарантирует высокую надежность и долговечность.

Обработка внутренней поверхности оцинкованных оболочек фосфати-рующим модификатором приводит к значительному увеличению прочности при сдвиге в тангенциальном направлении, характеризующей адгезионную прочность ППУ к гидрозащитной оболочке.

На чертеже представлен продольный разрез теплогидроизолированного трубного элемента для прокладки надземных теплотрасс в виде трубы.

Теплогидроизолированная труба для надземной прокладки теплотрасс содержит стальную трубу 1 с активной фосфатированной наружной поверхностью (наружная поверхность, которой очищена от коррозии и жировых загрязнений фосфатирующим модификатором с преобразователем ржавчины)

и комбинированную тепловую изоляцию , состоящую из двух слоев теплоизоляционных материалов - ЖК - 4 и ППУ 2, теплоизоляция находится в гидрозащитной оболочке 3, изготовленной из спиральновитой оцинкованной полосы из тонколистовой стали, внутренняя поверхность которой обработана фосфатирующим модификатором с преобразователем ржавчины, который находится в пассивной форме вследствие отсутствия следов коррозии под антикоррозионной пленкой.

На поверхность предварительно очищенной стальной трубы 1, нанесен первый - внутренний слой 4 ЖК - теплоизоляции толщиной от 3,5 до 5,0 мм с теплопроводностью при 50°С 0,021 Вт/м°С, теплостойкостью 200°С, включающей стеклянные микросферы, минеральные наполнители, вспученного перлита, волостонита и связующее - бутадиен-стирольный латекс. После сушки первого слоя на поверхности ЖК теплоизоляции устанавливают центрирующие кольца 5 для центровки стальной трубы и оболочки. После чего трубный элемент 1 с центрирующими кольцами устанавливают в гидрозащитную оболочку 3, диаметр больше, чем диаметр стальной трубы с нанесенным на нее слоем ЖК теплоизоляции. Полученный между оболочкой и слоем ЖК теплоизоляции определяет толщину второго - наружного слоя теплоизоляции. Затем герметизируют торцы гидрозащитной оболочки с двух сторон с помощью фланцев (на чертеже не показаны) и через литьевое отверстие заливают необходимое для второго слоя теплоизоляции количество жесткого ППУ с плотностью 75-80 кг/м3 и теплопроводностью при 50°С 0,03 ВТ/м°С. Аналогичную конструкцию имеют другие разновидности трубных элементов, в качестве которых могут выступать: переход, отвод, тройник, скользящая опора, Z-образный компенсатор и другие фасонные элементы.

Пример выполнения теплогидроизолированного трубного элемента в виде трубы.

На наружной поверхности трубного элемента 1, очищенного от механического и других загрязнений, с наружным диаметром 159 мм наносят фосфатирующий модификатор и формируют активную фосфатированную

поверхность - фосфатирующее комплексообразующее покрытие толщиной до 0,15-0,2 мм (по необходимости возможно нанесение дополнительно грунта, например из той же ЖК -теплоизоляции разбавлением водой) после чего на наружную поверхность трубного элемента 1 наносят внутренний слой теплоизоляции 4 толщиной от 3,5 до 5,0 мм, образованный ЖК - покрытием, включающим стеклянные микросферы, минеральные наполнители, вспученного перлита, волостонит и связующее - бутадиен-стирольный латекс. Аналогичным образом активизируют внутреннюю поверхность оболочки 3, изготовленной из полосы оцинкованной стали толщиной 0,55 мм, обрабатывая ее составом фосфатирующего модификатора. Затем на трубу 1 устанавливают центрирующие кольца 5, после чего трубу 1 помещают в оболочку 3 с образованием между наружной поверхностью первого слоя теплоизоляции 4 и внутренней поверхностью оболочки 3 кольцевого зазора. Герметизируют торцевые участки оболочки 3 фланцами с двух сторон и заполняют кольцевое межтрубное пространство вспенивающим теплоизолирующим материалом - ППУ 75-80 кг/м 3 и дают выдержку времени для его структурирования с образованием таким образом наружного слоя 2 теплоизоляции.

Настоящая полезная модель может быть использована везде, где требуется наземная прокладка теплотрасс, например при прокладке трубопроводов для горячего водоснабжения и централизованного водяного отопления, при этом отдельные трубы соединяют друг с другом посредством сварки или с помощью фасонных изделий.

Трубный элемент с комбинированной теплоизоляцией в гидрозащитной оболочке, содержащий стальной трубный элемент, теплоизоляцию и гидрозащитную спиральновитую оболочку из тонколистовой оцинкованной стали, отличающийся тем, что теплоизоляция выполнена двухслойной, при этом внутренний слой теплоизоляции выполнен толщиной 3,5-5,0 мм и образован жидкокерамическим покрытием, включающим стеклянные микросферы, минеральные наполнители, вспученный перлит, волостанит и связующее - бутадиенстирольный латекс с теплостойкостью 200°С, теплопроводностью при 50°С 0,021 Вт/м°С, а наружный слой теплоизоляции выполнен из жесткого пенополиуретана плотностью 75-80 кг/м3 и теплопроводностью 0,03 Вт/м°С, причем на внутреннем слое теплоизоляции установлены центрующие кольца, формирующие кольцевой зазор между последним и гидрозащитной спиральновитой оболочкой, который заполнен жестким пенополиуретаном образующим наружный слой теплоизоляции, внутренний слой теплоизоляции нанесен на наружную активную фосфатированную поверхность стального трубного элемента, полученную после очистки от ржавчины, окалины и жировых отложений и одновременной обработки фосфатирующим модификатором с преобразователем ржавчины, а внутренняя поверхность оболочки обработана фосфатирующим модификатором, включающим преобразователь ржавчины и антикоррозионный пленкообразователь.



 

Похожие патенты:

Полезная модель относится к конструктивным элементам трубопроводов с тепловой изоляцией стальных труб в гидрозащитной полиэтиленовой оболочке и может быть использована в строительстве и теплоэнергетике.

Изобретение относится к нефтегазовой отрасли и может быть использовано для подъема продукции из скважин и дальнейшего ее транспортирования, для выполнения операций подземного ремонта скважин
Наверх