Аппаратура для исследования действующих скважин

 

Полезная модель относится к области эксплуатации скважин и может быть использована для проведения геофизических исследований скважин. Техническим результатом, получаемым от внедрения полезной модели, является получение однозначных результатов исследований теплопроводности пластов, окружающих скважину переменного сечения. Данный технический результат достигается тем, что аппаратура термического каротажа дополняется скважинным профилемером, который корректирует показания термической аппаратуры при изменении диаметра скважины (1 н.п. и 3 з.п. ф-лы; 2 ил.).

Полезная модель относится к области эксплуатации скважин и может быть использована для проведения геофизических исследований скважин.

Известна аппаратура, реализуемая в способе аналогичного назначения, согласно которого с помощью термического каротажа регистрируют термограмму по стволу скважины и по величине зарегистрированных температурных аномалий определяют тепловые свойства пород, окружающих скважину /Патент РФ 2136880, кл. E21B 47/00, 1999/.

Недостатком аналога является влияние на результаты исследований различных амплитудных факторов, например, изменение диаметра скважины.

Известна аппаратура для исследования действующих скважин, содержащая термическую каротажную систему, выполненную в виде нагревателя, подключенного к источнику тока, термометра, соединенного выходом через усилитель с регистратором, и спускоподъемного устройства в виде лебедки с управляемым приводом, соединенного выходом с регистратором, а также кинематически связанного с лебедкой спускоподъемного устройства каротажного кабеля-троса, на конце которого закреплены друг над другом нагреватель и термометр /Патент США 2274248, кл. 73-154, 1942/.

Данная аппаратура принята за прототип. Недостатком прототипа являются погрешности, получаемые при интерпретации термограмм. Поскольку величины температурных градиентов на термограмме, по которым определяют теплопроводность пластов, окружающих скважину, зависят не только от тепловых свойств пород, но и от величины прогрева ствола скважины, а величина прогрева ствола скважины зависит от ее диаметра. Причем, чем больше поперечное сечение ствола скважины, тем меньше прогрев окружающих ее пород для одной и той же мощности нагрева.

Техническим результатом, получаемым от внедрения полезной модели, является устранение недостатка прототипа, то есть получение однозначных результатов исследований теплопроводности пластов, окружающих скважину переменного сечения.

Данный технический результат достигается за счет того, что известная аппаратура для исследования действующих скважин, содержащая термическую каротажную систему, выполненную в виде нагревателя, подключенного к источнику тока, термометра, соединенного выходом через усилитель с регистратором, и спускоподъемного устройства в виде лебедки с управляемым приводом, соединенным выходом с регистратором, а также кинематически связанного с лебедкой спускоподъемного устройства, при этом на конце каротажного кабеля-троса закреплены друг над другом нагреватель и термометр, дополнительно содержит блок управления, переключатель и скважинный профилемер с выходным прибором, при этом профилемер установлен на каротажном кабеле-тросе выше нагревателя, а его выход через выходной прибор подключен к блоку управления, выход которого через переключатель соединен или с управляющим входом источника тока нагревателя, или с управляющим входом управляемого привода лебедки спускоподъемного устройства.

В аппаратуре для исследования скважин скважинный профилемер установлен на каротажном кабеле-тросе с возможностью его смещения относительно нагревателя.

Аппаратура для исследования скважин дополнительно содержит центраторы каротажного кабеля-троса.

В аппаратуре для исследования скважин нагреватель и термометр закреплены на каротажном кабеле-тросе с возможностью изменения расстояния между ними.

Полезная модель поясняется чертежами.

На фиг.1 представлена схема реализации аппаратуры в скважине; на фиг.2 - электронная схема аппаратуры.

Аппаратура, реализуемая в действующей скважине 1 (фиг.1), содержит термическую каротажную систему (КС), выполненную в виде нагревателя 2 (фиг.2), подключенного к источнику 3 тока (ИТ 3), и термометра 4, соединенного выходом через усилитель 5 (У 5) с регистратором 6 (Р 6).

КС также включает в себя спускоподъемное устройство 7 (СПУ 7), в виде лебедки 8 с управляемым приводом 9 (УП 9), соединенного выходом с Р 6.

Каротажный кабель-трос 10 кинематически связан с лебедкой 8. На кабеле-тросе 10 последовательно сверху вниз закреплены профилемер 11, нагреватель 2 и термометр 4.

Нагреватель 2 и термометр 4 выполнены с возможностью изменения расстояния между ними и расстояния от них до профилемера 11.

Аппаратура может дополнительно содержать один или несколько центраторов кабеля-троса.

Электронная схема (фиг.2) также содержит выходной прибор 12 (ВП 12), блок управления 13 (БУ 13) и переключатель 14.

Электрические связи между блоками электронной схемы показаны на фиг.2.

Выход профилемера 11 связан со входом ВП 12, соединенного выходом со входом БУ 13, выход которого соединен с переключателем 14. Переключатель 14 дистанционно позволяет подключать ВП 12 или к УП 9, или к ИТ 3.

Выходы У 5 и УП 9 подключены к двум входам Р 6, позволяя последнему синхронно регистрировать глубину погружения термометра 4 в скважину 1 и величину выходного сигнала с него.

Аппаратура работает следующим образом.

В скважину 1 спускают на каротажном кабеле-тросе 10 термометр 4, нагреватель 2 и профилемер 11. При спуске рычаги профилемера сложены (если применяется механический тип профилемера), а ИТ 3 нагревателя 2 - выключен. При достижении забоя скважины 1 включают в работу профилемер 11 и нагреватель 2 и начинают с равномерной скоростью поднимать приборы 2, 4, 11 вверх, одновременно регистрируя температуру, глубину и диаметр скважины.

С помощью нагревателя 2 происходит разогревание ствола скважины 1 посредством теплового следа 15. Охлаждение ствола скважины 1 будет происходить тем интенсивнее, чем выше теплопроводность пород, окружающих нагретый участок скважины 1. Соответственно, интервалы глубин, представленные породами 16 с высокой теплопроводностью, будут отличаться в регистраторе Р 6 повышенными значениями температуры. На термограмме на этой глубине появляются температурные аномалии, по которым можно исследовать свойства пластов 16 горных пород.

При этом, когда диаметр скважины 1 изменяется, например, на глубине 17, температура нагрева скважины в этом месте также изменяется (при увеличении диаметра уменьшается, при уменьшении диаметра - увеличивается).

На термограмме на этой глубине также появится температурная аномалия, которая будет интерпретироваться как появление пласта с другими температурными свойствами породы, что может привести к погрешностям определения тепловых свойств пластов.

Для исключения подобных ошибок с профилемера 11, в зависимости от положения переключателя 14 на ИТ 3 или УП 9, своевременно подается командный сигнал по увеличению или уменьшению степени нагрева нагревателя 2, или по изменению скорости его подъема. Этим корректируются изменения температуры скважины из-за изменения ее диаметра.

При этом, если диаметр сечения скважины изменяется достаточно быстро, изменяют ток нагревателя 2, если плавно, то изменяют скорость каротажа.

Предварительно аппаратура проходит метрологические испытания и градуировку в заводских условиях, при которых подбирают оптимальные значения расстояний между термометром 4, нагревателем 2 и профилемером 11 для каждого вида испытуемых скважин.

1. Аппаратура для исследования действующих скважин, содержащая термическую каротажную систему, выполненную в виде нагревателя, подключенного к источнику тока, термометра, соединенного выходом через усилитель с регистратором, и спускоподъемного устройства в виде лебедки с управляемым приводом, соединенным выходом с регистратором, при этом на конце каротажного кабеля-троса закреплены друг над другом нагреватель и термометр, отличающаяся тем, что дополнительно содержит блок управления, переключатель и скважинный профилемер с выходным прибором, при этом профилемер установлен на каротажном кабеле-тросе выше нагревателя, а его выход через выходной прибор подключен к блоку управления, выход которого через переключатель соединен или с управляющим входом источника тока нагревателя, или с управляющим входом управляемого привода лебедки спускоподъемного устройства.

2. Аппаратура по п.1, отличающаяся тем, что скважинный профилемер установлен на каротажном кабеле-тросе с возможностью его смещения относительно нагревателя.

3. Аппаратура по п.1, отличающаяся тем, что дополнительно содержит центраторы каротажного кабеля-троса.

4. Аппаратура по п.1, отличающаяся тем, что нагреватель и термометр закреплены на каротажном кабеле-тросе с возможностью изменения расстояния между ними.



 

Похожие патенты:

Полезная модель относится к геофизическому приборостроению, в частности к средствам гамма-гамма каротажа, а именно к области метрологического обеспечения скважинной геофизической аппаратуры и созданию стандартных образцов для калибровки скважинной аппаратуры

Устройство для исследования скважин предназначено для использования в нефтепромысловой геофизике при исследовании нефтяных и газовых скважин. Известны методы исследования скважин, которые можно условно разделить на две группы: гидродинамические исследования скважин и геофизические исследования скважин. С помощью этих методов решаются задачи при исследовании скважин эксплуатируемого месторождения: определение гидродинамических параметров пластов, нахождение профилей потоков, уточнение геометрии распределения запасов и структуры месторождения; изучение в процессе эксплуатации массо- и теплопереноса по пластам; определение эффективности различных технологических мероприятий и ремонтных работ; исследование технического состояния скважин, оборудования.

Техническим результатом является создание конструкции гидродинамического стенда, наиболее полно отображающего процессы в действующих горизонтальных скважинах, повышение информационной отдачи от гидродинамического стенда и повышение эксплуатационной надежности гидродинамического стенда

Изобретение относится к области разработки и эксплуатации нефтяных месторождений, в частности, может быть использовано для повышения эффективности эксплуатации нефтедобывающих скважин

Изобретение относится к горному делу и может применяться для тепловой обработки продуктивного пласта высоковязкой нефти, восстановления гидравлической связи пласта со скважиной, увеличения нефтеотдачи пластов и дебита скважин, а также возобновления эксплуатации нерентабельных скважин на нефть, природный газ, на пресные, минеральные и термальные воды
Наверх