Торцевое газодинамическое уплотнение вала центробежного компрессора

 

Полезная модель относится к области компрессоростроения и может быть использована в газовых центробежных компрессорных машинах, где возможны кратковременные прекращения подачи буферного газа на уплотнения. Торцовое газодинамическое уплотнение вала центробежного компрессора содержит две ступени бесконтактного уплотнения, вращающиеся части которого закреплены на роторной втулке, при этом на торцовой поверхности роторной втулки выполнены лопатки с наклоном в сторону направления вращения ротора. Каждая лопатка имеет форму неравномерной дуги с углом входа от 10 до 40 градусов на внешнем диаметре относительно средней линии профиля лопатки и касательной к окружности и углом выхода от 70 до 90 градусов на внутреннем диаметре относительно средней линии профиля лопатки и касательной к окружности. Техническим результатом полезной модели является повышение надежности и долговечности газодинамического уплотнения.

Полезная модель относится к области компрессоростроения и может быть использована в газовых центробежных компрессорных машинах,где возможны кратковременные прекращения подачи буферного газа на уплотнения.

Известны торцовые газодинамические уплотнения вала центробежного компрессора, содержащие, преимущественно две ступени бесконтактного уплотнения, вращающиеся части которого закреплены на роторной втулке, при этом на торцовой уплотнительной поверхности вращающейся части расположено устройство регулирования зазора, выполненное в виде газодинамических канавок или в виде уплотнительной кольцевой поверхности ступенчатой формы с углублением со стороны периферии на торцовой рабочей поверхности вращающейся части с ребрами, наклоненными в сторону вращения вала (см., например, патенты: RU 2177572, опубликован 27.12.2001; RU 2099618, опубликован 20.12.1997).

Учитывая малые зазоры в парах трения уплотнений, буферный газ перед подачей в уплотнения очищается от механических примесей с помощью фильтров. При засорении фильтров очистки газа «системы регулирования и контроля газодинамических уплотнений» подается сигнал об их замене или переключении на резервный фильтр. В момент замены или переключения на резервный фильтр происходит кратковременное прекращение подачи буферного газа и попадание на уплотнение грязного газа из полости компрессора, что часто приводит к выходу из строя уплотнений. Указанный недостаток существенно влияет на надежность и долговечность газодинамического уплотнения.

Техническим результатом полезной модели является повышение надежности и долговечности газодинамического уплотнения.

Технический результат достигается благодаря тому, что торцовое газодинамическое уплотнение вала центробежного компрессора содержит две ступени бесконтактного уплотнения, вращающиеся части которого закреплены на роторной втулке, при этом на торцовой поверхности роторной втулки выполнены лопатки с наклоном в сторону направления вращения ротора.

Кроме того, каждая лопатка может иметь форму неравномерной дуги с углом входа от 10 до 40 градусов на внешнем диаметре относительно средней линии профиля лопатки и касательной к окружности и углом выхода от 70 до 90 градусов на внутреннем диаметре относительно средней линии профиля лопатки и касательной к окружности.

Полезная модель поясняется чертежами, где на фиг.1 показана конструкция уплотнения вала; на фиг.2 показан вид А на фиг.1; на фиг.3 показано преимущественное расположение и количество лопаток.

Торцовое газодинамическое уплотнение вала центробежного компрессора содержит две ступени бесконтактного уплотнения, вращающиеся части которого закреплены на роторной втулке 1. Каждая ступень уплотнения образована соответствующей парой трения, состоящей из вращающегося твердосплавного диска 2, установленного по определенной посадке на втулке 1, выполненного, например, из карбида вольфрама и аксиально-подвижного графитового кольца 3, поджимаемого к диску 2 пружиной 4, размещенной в корпусе 5 уплотнения (фиг.1).

На торцовой поверхности роторной втулки 1 со стороны проточной части компрессора выполнены заодно целое с роторной втулкой 1 профильные лопатки 6, образующие лопаточную решетку. Каждая лопатка 6 имеет форму неравномерной дуги и выполнена на торцовой поверхности втулки 1 наклонной в сторону направления вращения ротора 7. При этом угол входа 1 каждой лопатки на внешнем диаметре втулки 1 составляет от 10 до 40 градусов относительно средней линии профиля лопатки 6 и касательной к окружности, а угол выхода 2 на внутреннем диаметре составляет от 70 до 90 градусов относительно средней линии профиля лопатки 6 и касательной к окружности. Оптимальный угол входа 1 необходимый для достижения наилучшего результата, составляет от 13 до 15 градусов, а угол выхода 2 - 90 градусов.

При работе уплотнения, как в стоянке, так и в динамике аксиально-подвижные кольца 3 поджимаются своими рабочими поверхностями к рабочим поверхностям вращающихся дисков 2, обеспечивая тем самым герметизацию зазора между ними, при этом их рабочие поверхности изготовлены с высокой точностью. Смазка и охлаждение пар трения газодинамических уплотнений, а также герметизация корпуса сжатия компрессора уплотнениями осуществляется с помощью буферного газа, подаваемого в необходимом количестве и с давлением превышающим давление газа в корпусе компрессора не менее 0,1-0,2 кгс/см2. Учитывая малые зазоры в парах трения уплотнений (1-3 мкм), буферный газ перед подачей в уплотнения очищается от механических примесей до 1 мкм и на 100% от влаги с помощью фильтров - основного и резервного (не показаны).

Лопатки 6 при вращении захватывают и направляют поток буферного газа в сторону внутренней полости корпуса компрессора, создавая за счет центростремительных сил, создаваемых профильными лопатками, дополнительное избыточное давление, образуя тем самым барьер для проникновения загрязненного газа из внутренней полости компрессора.

Лопаточная решетка состоит, преимущественно, из 15 равномерно расположенных лопаток 6. Координаты средней линии образуются плавным переходом от угла 1=13°÷15° внешнего диаметра к внутреннему с углом 2=90° близкой к эвольвенте. Толщина профиля лопаток t равна от 0,02 до 0,025 от наружного диаметра лопаток DH. Входная кромка на внешнем диаметре имеет радиус скругления r1 равном 0,1 от толщины лопаток t. Выходная кромка r2 равна 0,5 от толщины лопаток t. Высота лопатки определяется конструкцией уплотнения, но не менее 0,025 от наружного диаметра DH.

Количество и профиль лопаток 6 определяются газодинамическим расчетом в зависимости от конструктивного исполнения уплотнений и режимом работы компрессора по специально разработанным программам.

1. Торцевое газодинамическое уплотнение вала центробежного компрессора, содержащее две ступени бесконтактного уплотнения, вращающиеся части которого закреплены на роторной втулке, отличающееся тем, что на торцевой поверхности роторной втулки выполнены лопатки с наклоном в сторону направления вращения ротора.

2. Уплотнение по п.1, отличающееся тем, что каждая лопатка имеет форму неравномерной дуги с углом входа от 10 до 40º на внешнем диаметре относительно средней линии профиля лопатки и касательной к окружности и углом выхода от 70 до 90º на внутреннем диаметре относительно средней линии профиля лопатки и касательной к окружности.



 

Похожие патенты:

Полезная модель относится к техническим средствам диагностирования и контроля технического состояния электрических цепей переменного тока

Роторный воздушный компрессор (вр) - это установка, которая предназначена для сжатия газа (жидкости) и его подачи под давлением. Известно большое разнообразие типов, конструкцией и схем компрессоров. Компрессоры с принципом объёмного действия – установки, работающие в результате изменений объёма рабочей камеры.

Лабиринтное уплотнение относится к области машиностроения, преимущественно к авиационным газотурбинным двигателям, и может быть использовано в паровых и газовых турбинах и нагнетателях для перекачки газа и т.п. Техническим результатом, достигаемом при использовании данного типа уплотнения осевого компрессора является снижение массы и металлоемкости, упрощение конструкции, упрощение изготовления, упрощение диагностики, замены и ремонта ответного кольца заявленного лабиринтного уплотнения и относительная простота его последующей переработки.

Полезная модель относится к железнодорожному подвижному составу и предназначена для измерения параметров электрических цепей постоянного и переменного тока: сопротивления изоляции, возвратного напряжения, тока реабсорбции, емкости, индуктивности, активного сопротивления
Наверх