Способ получения дисперсных частиц меди электрохимическим методом



Способ получения дисперсных частиц меди электрохимическим методом
Способ получения дисперсных частиц меди электрохимическим методом
Способ получения дисперсных частиц меди электрохимическим методом
Способ получения дисперсных частиц меди электрохимическим методом
B22F2301/10 - Порошковая металлургия; производство изделий из металлических порошков; изготовление металлических порошков (способы или устройства для гранулирования материалов вообще B01J 2/00; производство керамических масс уплотнением или спеканием C04B, например C04B 35/64; получение металлов C22; восстановление или разложение металлических составов вообще C22B; получение сплавов порошковой металлургией C22C; электролитическое получение металлических порошков C25C 5/00)

Владельцы патента RU 2708719:

Федеральное государственное бюджетное образовательное учреждение высшего образования "Московский автомобильно-дорожный государственный технический университет (МАДИ)" (RU)

Изобретение относится к электрохимическому получению дисперсных медьсодержащих частиц. Готовят раствор полимера в качестве стабилизирующего компонента и электролит, содержащий катионы меди. Ведут электролиз раствора постоянным током в электролизере с медными катодом и анодом с осаждением частиц меди. Используют анод, выполненный в виде полого цилиндра, а катод - в виде пучка изолированных, равномерно распределенных в объеме раствора внутри цилиндра проводов с открытыми сечениями, обеспечивающих катодную плотность тока от 10 до 100 А/см2. Получают медь-полимерные наночастицы сферической формы с размерами не более 20 нм, генерируемые во всем объеме образованного коллоидного раствора, которые после их осаждения представляют собой высокодисперсные, однородные по форме частицы с кристаллической огранкой, не содержащие дендритов. Обеспечивается повышение скорости электрохимического процесса с получением однородных по форме и размеру высокодисперсных частиц меди с низкой агломерируемостью. 2 з.п. ф-лы, 4 ил., 5 пр.

 

Изобретение относится к электрохимическим способам получения высокодисперсных частиц меди в водных растворах полимеров и может быть использовано в производстве катализаторов, композиционных материалов, бактерицидных материалов для применения в химической, электрохимической промышленности, порошковой металлургии, энергетике и других отраслях промышленности.

Известен способ, включающий растворение стабилизирующих компонентов в растворителе, помещение в полученный раствор стабилизатора, анода и катода в виде металлических пластин, электрохимическое растворение анода из меди при пропускании постоянного электрического тока, где в качестве растворителя применяют дистиллированную воду, а в качестве стабилизирующих компонентов - органические и неорганические соединения, а в качестве катода применяют нержавеющую сталь (патент РФ №2410471, МКИ С25С 5/02, опубл. в 2011 г.).

Недостатком известного способа является недостаточно высокая скорость процесса. Кроме того, недостатком известного способа является необходимость организации участка для приготовления органических стабилизирующих компонентов при нагревании до 45-55°С, использование дополнительных низкомолекулярных стабилизаторов - солей лимонной кислоты, что повышает эксплуатационные издержки технологического процесса.

Известен способ получения наночастиц меди, включающий приготовление водного раствора полимера, помещение в раствор цитрата аммония и электродной системы, состоящей из медного анода и катода из нержавеющей стали, и проведение электролиза при плотности тока 10-20 А/м2 и напряжении на электродах 10-20 В в течение заданного времени (патент РФ №2410472, МКИ С25С 5/02, опубл. в 2011 г.).

Недостатком известного способа является невысокая скорость процесса, многокомпонентность водного раствора и необходимость перемешивания для предотвращения оседания меди на катоде с целью выхода наночастиц меди в водную среду.

Наиболее близким к заявляемому способу по технической сущности является принятый в качестве прототипа способ, приведенный в статье И.М. Паписова и др. «Нанокомпозит, формирующийся на катоде при электрохимическом восстановлении ионов меди из полимерного раствора». В этом способе восстановление ионов меди проводили в ячейке с электродами из катодной меди. Размер электродов 6 × 20 × 0,1 мм. Расстояние между электродами 30 мм, напряжение 5,19 В. Концентрация в воде сульфата меди 0.02 моль/л, поли-N-винилпирролидона 0,02 осново-моль/л. Катодная плотность тока составляла 4 А/см2. Образцы продукта два раза промывали водой, а затем этиловым спиртом (Доклады Академии наук, 2016, том 468, №5, с. 534-537).

Недостатком известного технического решения является невысокая скорость процесса, осаждение продукта на катоде и необходимость механического снятия продукта с катодной пластины.

Технической задачей, решаемой настоящим изобретением, является повышение скорости электрохимического процесса и повышение скорости получения продукта в целом, а также получение высокодисперсных однородных частиц.

Поставленная техническая задача решается тем, что в способе получения дисперсных частиц меди электрохимическим методом, включающем приготовление раствора полимера в качестве стабилизирующего компонента и электролита, содержащего катионы меди, электролиз раствора постоянным током в электролизере с медными катодом и анодом и получение частиц меди путем их осаждения, согласно изобретению анод выполнен в виде полого цилиндра, а катод выполнен в виде пучка изолированных, равномерно распределенных в объеме раствора внутри цилиндра проводов с открытыми сечениями с обеспечением катодной плотности тока от 10 до 100 А/см2, при этом в процессе электролиза получают медь-полимерные наночастицы сферической формы с размерами не более 20 нм, генерируемые во всем объеме образованного коллоидного раствора, которые после их осаждения представляют собой высокодисперсные, однородные по форме частицы с кристаллической огранкой, не содержащие дендритов.

На решение поставленной технической задачи направлено также то, что в качестве стабилизирующего компонента используют поли-N-винилпирролидон с различной молекулярной массой либо полиэтиленгликоль-600 монолаурат.

На решение поставленной технической задачи направлено также и то, что в качестве электролита, содержащего катионы меди, используют сульфат меди либо ацетат меди.

Способ поясняется чертежами, где на фиг. 1 изображена электронная микрофотография наночастиц меди в виде коллоидной дисперсии, полученной на начальной стадии электролиза по предлагаемому способу; на фиг. 2 - электронная микрофотография продукта, полученного на поверхности катода по прототипу; на фиг. 3 - электронная микрофотография осадка, полученного по прототипу; на фиг. 4 - электронная микрофотография осадка, полученного по предлагаемому способу.

Способ получения дисперсных частиц меди электрохимическим методом заключается в том, что приготавливают водный раствор полимера в качестве стабилизирующего компонента и электролита, который содержит катионы меди. Затем проводят электролиз полученного раствора постоянным током в электролизере с медным анодом и катодом. В результате электролиза получают частицы меди путем их осаждения. При этом анод выполнен в виде полого цилиндра, а катод - в виде пучка изолированных, равномерно распределенных в объеме раствора внутри полого цилиндра проводов с открытыми сечениями. При этом обеспечивается катодная плотность тока 10 до 100 А/см2. Полученные в процессе электролиза медь-полимерные наночастицы генерируются во всем объеме образованного коллоидного раствора, имеют сферическую форму и размер не более 20 нм. После осаждения они представляют собой высокодисперсные, однородные по форме частицы с кристаллической огранкой. При этом в их структуре отсутствуют дендриты. Причем в качестве полимерного стабилизатора используют поли-N-винилпирролидон с различной молекулярной массой либо полиэтиленгликоль-600 монолаурат, а в качестве электролита - сульфат меди либо ацетат меди.

Скорость электрохимического процесса определяется скоростью лимитирующей стадии, которой является восстановление ионов меди на катоде, что, в свою очередь, определяется катодной плотностью тока. Кроме того, электрохимический процесс зависит и от времени подхода разряжающихся катионов меди от анода к катоду. Для решения поставленной задачи необходимо либо увеличить силу тока, либо уменьшить площадь катода. В случае катода в виде пластины, как в известном случае, увеличивать силу тока нерационально, так как произойдет обеднение прикатодной области ионами меди и обогащение ионами меди прианодной области, что приведет к нарушению электрохимического процесса. Например, из-за того, что вследствие подщелачивания прикатодной области возможно образование гидроксидов и основных солей, оседающих на поверхности катода и загрязняющих продукт и блокирующих поверхность. Напротив, уменьшение площади катода повышает плотность тока без изменения силы тока, проходящего через электролизер. При этом, для решения поставленной задачи вместо катодной пластины (плоского электрода) использовали медный изолированный провод, открытое сечение которого представляет собой катодную поверхность. Чтобы суммарный ток через электролизер составлял необходимую величину использовали пучок из нескольких проводов. Для уменьшения времени миграции катиона от анода к катоду анод был выполнен в виде полого цилиндра, расположенного по стенкам корпуса электролизера. Окончания проводов с открытыми сечениями были распределены внутри цилиндра по всему объему раствора. Преимуществом такого расположения катодов является то, что при этом захват частиц меди полимером происходит по всему объему равномерно. Так как катод в такой ситуации выступает как точечный, то и миграция, и диффузия катионов к такому катоду осуществляется со всех сторон, то есть является трехмерной, в отличие от плоского катода, где реализуется одномерный подвод катионов. Кроме того, повышенная плотность тока способствует получению наноразмерных частиц меди, а малая площадь катода облегчает взаимодействие частиц меди с полимером и способствует отрыву образовавшегося продукта от катода. Это исключает операцию механического снятия продукта с катода. Макромолекулы полимера взаимодействуют с растущей наночастицей в процессе восстановления ионов металла и контролируют размер частиц металла, образуя полимерный экран. Стабилизация наночастиц полимером происходит на более ранних стадиях процесса при меньших размерах частиц меди (фиг. 1).

Способ получения дисперсных частиц меди электрохимическим методом поясняется примерами.

Пример 1. По способу, изложенному в прототипе, в электролизере готовили водный раствор, содержащий 0,02 моль/л CuSO4 и 0,02 осново-моль/л поли-N-винилпирролидона с молекулярной массой 360000. В раствор погружали медный анод и медный катод. Размер электродов 6 × 20 × 0,1 мм. Расстояние между электродами 30 мм, напряжение 5,19 В. Начальная расчетная плотность тока составила 4 А/см2. Катод после окончания электролиза промывали водой, затем спиртом. По данным сканирующей электронной микроскопии продукт, образовавшийся на катоде, имел дендритную структуру и состоял из частиц размером 200-500 нм (фиг. 2). На дне электролизера в незначительном количестве образовывался осадок, состоящий из смеси дендритов и частиц размером от 0,5 до 2 мкм с кристаллической огранкой (фиг. 3).

Пример 2. В стеклянной емкости (электролизере) объемом 1 литр готовили водный раствор, содержащий 0,02 моль/л CuSO4 и 0,02 осново-моль/л поли-N-винилпирролидона с молекулярной массой 360000. В раствор погружали медный анод, соединенный с анодной шиной электролизера, в виде полого цилиндра. Во внутреннее пространство полости медного цилиндра, не касаясь его, равномерно распределяли окончания изолированных проводов в количестве 15 штук диаметром 0,5 мм с открытым сечением площадью 0,2 мм2. За пределами электролизера провода электрически соединяли с катодной шиной. От стабилизированного источника питания постоянного тока на электроды подавали необходимое напряжение для поддержания силы тока в 3А. Электролиз проводили в гальваностатическом режиме в течение 1 часа. При этом начальная расчетная плотность тока составила 100 А/см2, в 25 раз выше, чем в прототипе. В процессе электролиза на поверхности открытых сечений формировался продукт в виде шарообразных наростов, которые по мере роста отрывались от катодов в объем раствора и осаждались на дне электролизера. Осадок состоял из высокодисперсных однородных по форме частиц с кристаллической огранкой (фиг. 4). Размер частиц 0,2-0,8 мкм. Частицы дендритного строения отсутствовали.

Пример 3. В электролизере готовили водный раствор, содержащий 0,02 моль/л CuSO4 и 0,02 осново-моль/л полиэтиленгликоль-600 монолаурата. В раствор погружали медный анод, соединенный с анодной шиной электролизера, в виде полого цилиндра. Во внутреннее пространство полости медного цилиндра, не касаясь его, равномерно распределяли окончания изолированных проводов в количестве 15 штук диаметром 0,5 мм с открытым сечением площадью 0,2 мм2. За пределами электролизера провода электрически соединяли с катодной шиной. От стабилизированного источника питания постоянного тока на электроды подавали необходимое напряжение для поддержания силы тока в 3А. Электролиз проводили в гальваностатическом режиме в течение 1 часа. При этом начальная расчетная плотность тока составила 100 А/см2, в 25 раз выше, чем в прототипе. В процессе электролиза на поверхности открытых сечений формировался продукт в виде шарообразных наростов, которые по мере роста отрывались от катодов в объем раствора и осаждались на дне электролизера. Осадок состоял из высокодисперсных однородных по форме частиц с кристаллической огранкой. Размер частиц 0,1-0,8 мкм. Частицы дендритного строения отсутствовали.

Пример 4. В электролизере готовили водный раствор, содержащий 0,02 моль/л ацетата меди и 0,02 осново-моль/л поли-N-винилпирролидона с молекулярной массой 360000. В раствор погружали медный анод, соединенный с анодной шиной электролизера, в виде полого цилиндра. Во внутреннее пространство полости медного цилиндра, не касаясь его, равномерно распределяли окончания изолированных проводов в количестве 15 штук диаметром 0,5 мм с открытым сечением площадью 0,2 мм2. За пределами электролизера провода электрически соединяли с катодной шиной. От стабилизированного источника питания постоянного тока на электроды подавали необходимое напряжение для поддержания силы тока в 3А. Электролиз проводили в гальваностатическом режиме в течение 1 часа. При этом начальная расчетная плотность тока составила 100 А/см2, в 25 раз выше, чем в прототипе. В процессе электролиза на поверхности открытых сечений формировался продукт в виде шарообразных наростов, которые по мере роста отрывались от катодов в объем раствора и осаждались на дне электролизера. Осадок состоял из высокодисперсных однородных по форме частиц с кристаллической огранкой. Размер частиц 0,1-1 мкм. Частицы дендритного строения отсутствовали.

Пример 5. В электролизере готовили водный раствор, содержащий 0,02 моль/л CuSO4a и 0,02 осново-моль/л поли-N-винилпирролидона с молекулярной массой 60000. В раствор погружали медный анод, соединенный с анодной шиной электролизера, в виде полого цилиндра. Во внутреннее пространство полости медного цилиндра, не касаясь его, равномерно распределяли окончания изолированных проводов в количестве 10 штук открытых сечений проводов диаметром 5 мм. Значение плотности тока установили 10 А/см2 в 2,5 раза выше чем в прототипе. Осадок состоял из частиц с кристаллической огранкой. Размер частиц 0,2-1 мкм. Частицы дендритного строения отсутствовали.

Техническим результатом заявляемого способа является повышение скорости электрохимического процесса и повышение скорости получения продукта в целом, что приводит к снижению трудозатрат, в том числе для съема продукта с катода. Кроме того, использование предлагаемого способа позволяет получить однородные по форме и размеру высокодисперсные частицы меди с низкой агломерируемостью.

Таким образом, изобретение позволяет интенсифицировать процесс электролиза, а также получить высокодисперсные однородные по форме, не содержащие дендритов, частицы с кристаллической огранкой.

1. Способ электрохимического получения дисперсных медьсодержащих частиц, включающий приготовление раствора полимера в качестве стабилизирующего компонента и электролита, содержащего катионы меди, электролиз раствора постоянным током в электролизере с медными катодом и анодом и получение частиц меди путем их осаждения, отличающийся тем, что используют анод, выполненный в виде полого цилиндра, а катод - в виде пучка изолированных, равномерно распределенных в объеме раствора внутри цилиндра проводов с открытыми сечениями, обеспечивающих катодную плотность тока от 10 до 100 А/см2, при этом в процессе электролиза получают медь-полимерные наночастицы сферической формы с размерами не более 20 нм, генерируемые во всем объеме образованного коллоидного раствора, которые после их осаждения представляют собой высокодисперсные, однородные по форме частицы с кристаллической огранкой, не содержащие дендритов.

2. Способ по п. 1, отличающийся тем, что в качестве полимера используют поли-N-винилпирролидон с различной молекулярной массой либо полиэтиленгликоль-600 монолаурат.

3. Способ по п. 1, отличающийся тем, что в качестве электролита используют сульфат меди либо ацетат меди.



 

Похожие патенты:

Изобретение относится к получению цинкового порошка из цинксодержащих отходов. Способ включает выщелачивание цинксодержащих отходов, электрохимическое осаждение цинкового порошка в виде осадка из щелочного электролита и промывку осадка.
Изобретение относится к нерастворимому аноду электролизеров для получения сплавов металлов в порошкообразном виде. Рабочая часть анода состоит из диэлектрической подложки с активным слоем, содержащим спеченную смесь оксида рутения и оксидного стекла в объемном соотношении от 4/1 до 2/1.

Изобретение относится к получению металлического кальция. Способ включает электролиз растворов его солей, который проводят в апротонном растворителе в виде диметилсульфоксида, или диметилацетамида, или их смеси.

Изобретение относится к порошковой металлургии и может быть использовано для производства паяльных паст. Электролизер для получения порошка припоя содержит ванну, заполненную электролитом, анод, выполненный в виде кольцевого цилиндра, соосно помещенный в анод катод, выполненный в виде пакета электроизолированных игл, установленных остриями в направлении анода.

Изобретение относится получению нанопорошка меди. Способ получения нанопорошка меди включает растворение медного анода с последующим восстановлением меди из электролита на титановом рифленом виброкатоде, по окончании электролиза полученный медный нанопорошок фильтруют под избыточным давлением инертного газа, промывают дистиллированной водой из расчета 1 л воды на 100 г нанопорошка и сушат при температуре 90-110°С в атмосфере аргона в течение 30-45 минут.

Изобретение может быть использовано при производстве паяльных паст. Получают суспензию порошка припоя с электролитом в ванне электролизера.

Изобретение относится к получению медьсодержащего материала в виде металлической подложки с нанесенными на нее микрочастицами меди. Ведут электроосаждение на металлическую подложку монослоя икосаэдрических микрочастиц меди с размером от 5 мкм до 15 мкм, обладающих шестью осями симметрии пятого порядка, из электролита в виде сернокислого медного раствора при перенапряжении 30-150 мВ.

Изобретение относится к технологии получения медного электролитического порошка с размером частиц менее 63 мкм с удельной поверхностью в диапазоне от 1900 до 2500 см2/г и насыпной плотностью менее 0,75 г/см3.
Изобретение может быть использовано в неорганической химии. Способ получения оксида меди (I) включает электрохимическое окисление и диспергирование электродов в электролизере в растворе хлорида натрия.

Изобретение относится к порошковой металлургии. Способ получения наноразмерных частиц включает электроплазменную обработку поверхности электролита в виде солевого раствора, содержащего индуцированные ионы металлов или полупроводников с формированием из них частиц заданного размера.

Изобретение относится к электролитическому рафинированию меди, содержащей примеси в количестве до 2 мас.%. Способ включает формирование из меди анода и электролитическое растворение анода в сернокислотном растворе с осаждением катодной меди.

Изобретение относится к области цветной металлургии, в частности к электролитическому осаждению меди из сернокислых растворов с нерастворимыми анодами. Способ электроэкстракции меди из сульфатных электролитов включает создание на поверхности электролита защитного слоя пены при введении в него раствора алкилсульфата натрия непосредственно в подающий карман ванны совместно с электролитом.

Способ получения меди высокой чистоты включает сульфатизирующий обжиг исходного медного концентрата и выщелачивание огарка с выделением меди электролизом. Сульфатизирующий обжиг проводят на воздухе, спек охлаждают до комнатной температуры и проводят ситование до фракции менее 1,0 мм.

Изобретение относится к гидрометаллургии меди. Способ переработки многокомпонентных хлоридных и хлоридно-сульфатных растворов для получения чистого электролита CuSO4 и для его регенерации после электролиза с нерастворимым анодом включает осаждение из исходного раствора чистой соли CuCl действием на него ранее полученным порошком меди с последующим гидролитическим разложением CuCl водяным паром при температуре, равной или более 100°C, с получением оксида меди (I) - Cu2O.

Изобретение относится получению нанопорошка меди. Способ получения нанопорошка меди включает растворение медного анода с последующим восстановлением меди из электролита на титановом рифленом виброкатоде, по окончании электролиза полученный медный нанопорошок фильтруют под избыточным давлением инертного газа, промывают дистиллированной водой из расчета 1 л воды на 100 г нанопорошка и сушат при температуре 90-110°С в атмосфере аргона в течение 30-45 минут.
Изобретение относится к способу выщелачивания оксида меди без использования серной кислоты. Способ включает пропитку руды, содержащей оксид меди, органическим незагрязняющим выщелачивающим агентом, представляющим собой водный раствор, состоящий из трикарбоновой кислоты (С6Н8О7) и воды (H2O) и имеющий рН в диапазоне от 1,0 до 5,0.

Изобретение относится к технологии получения медного электролитического порошка с размером частиц менее 63 мкм с удельной поверхностью в диапазоне от 1900 до 2500 см2/г и насыпной плотностью менее 0,75 г/см3.

Изобретение относится к способу экстракции железа из водных растворов и может быть использовано в цветной и черной металлургии, а также для очистки промышленных и бытовых стоков.

Изобретение относится к металлургической отрасли, в частности к способу получения меди. Способ электролитического получения меди включает электролитическое анодное растворение медьсодержащего сырья в сернокислом медьсодержащем электролите с осаждением меди на катоде.
Изобретение относится к металлургической отрасли, в частности к способу выделения серебра из медного серебросодержащего сплава в процессе электролитического получения меди.
Изобретение относится к области нанотехнологии, медицины и пищевой промышленности. Способ получения нанокапсул сухого экстракта золотарника характеризуется тем, что в качестве оболочки нанокапсул используют гуаровую камедь, а в качестве ядра - сухой экстракт золотарника, при этом сухой экстракт золотарника добавляют в суспензию гуаровой камеди в петролейном эфире в присутствии 0,01 г Е472с в качестве поверхностно-активного вещества при перемешивании 700 об/мин, далее приливают 8 мл фторбензола, полученную суспензию нанокапсул отфильтровывают и сушат при комнатной температуре, при этом массовое соотношение ядро : оболочка составляет 1:1, 1:2 или 1:3.
Наверх