Способ получения медного электролитического порошка

Изобретение относится к технологии получения медного электролитического порошка с размером частиц менее 63 мкм с удельной поверхностью в диапазоне от 1900 до 2500 см2/г и насыпной плотностью менее 0,75 г/см3. Электролиз ведут на стержневых медных катодах в электролите с серной кислотой при двух катодных плотностях тока 2400 и 2800 А/м2 со смешиванием полученных фракций порошков и затем проводят промывку от электролита. Обеспечивается снижение удельной поверхности и насыпной плотности порошка. 1 табл.

 

Изобретение относится к технологии получения медных металлических порошков, получаемых электролитическим способом из сернокислого электролита в присутствии хлорид-ионов. Для получения медного электролитического порошка применяют состав электролита, содержащий ионы меди, свободную кислоту и хлорид-ионы. Порошок наращивают на стержнях в течение 1 часа. После электролиза порошки промывают от электролита, стабилизируют, промывают от стабилизатора, сушат во взвешенном состоянии, направляют на рассев.

В результате всех технологических операций медный порошок приобретает определенные свойства: удельную поверхность и насыпную плотность, связанные между собой обратно пропорциональной зависимостью. Известно, что чем меньше размер частиц, тем больше значения удельной поверхности порошка.

К медному порошку с размером частиц менее 63 мкм, как сырью для высокотехнологичных производств, предъявляются требования к низкой удельной поверхности от 1900 до 2500 см2/г и низкой насыпной плотности менее 0,75 г/см3.

Рассмотрим известные из уровня техники решения, предназначенные для получения медных электролитических порошков с заданными свойствами.

1. Порошки меди и ее сплавов. О.С. Ничипоренко, А.В. Помосов, С.С. Набойченко М.: Металлургия, 1988. Проблемы цветной металлургии, с. 123-128.

2. Влияние хлоридов на процесс электроосаждения порошкообразных осадков меди. Л.И. Гуревич, А.В. Помосов // Порошковая металлургия 1969. №1 С. 13-19.

3. Способ получения медного порошка электролизом. И.Б. Мурашова, С.Л. Коркин, А.В. Помосов и Д.Г. Суслопаров, авторское свидетельство SU №1243907 A1, B22F 9/14, 15.07.1986.

В первом источнике дано общее представление о влиянии плотности тока, концентрации ионов меди, серной кислоты и примесей на дисперсность медного порошка без привлечения конкретных примеров. Представленный в данном разделе график по влиянию плотности тока на насыпную плотность и удельную поверхность (рис. 35) соответствует более крупному порошку с размером частиц более 80 мкм. Не указано, при какой концентрации серной кислоты и хлорид-ионов составлен график. Указанный в данном источнике диапазон удельной поверхности от 400 до 800 см2/г и насыпной плотности от 0,8 до 1,3 г/см3 не соответствует условиям поставленной заявителем задачи.

Во втором источнике основной акцент был сделан на изучение влияния хлорид-ионов на структуру частиц медного порошка. Исследования проводили на лабораторном электроде неизвестного диаметра, поэтому указанные в данном материале величины удельной поверхности (от 11500 до 33000 см2/г) не соответствуют величинам, получаемым в промышленных условиях. Данный источник дает общее представление о закономерностях формирования медного порошка в присутствии хлорид-ионов при плотности тока 1500 А/м2. Проведенные заявителем опытно-промышленные испытания показали, что при плотности тока 1500 А/м2 и концентрации хлорид-ионов 15-32 мг/дм3 удельная поверхность фракции менее 63 мкм составила 3050-4700 см2/г, что не соответствует условиям поставленной задачи.

В третьем источнике, который взят за прототип, рассмотрено влияние линейно изменяющейся плотности тока (гальванодинамический режим) в широком диапазоне от 300 до 5455 А/м2 на грансостав порошка. Получен крупный порошок с содержанием фракций от 315 до 45 мкм. Выход требуемой фракции менее 63 мкм составил всего от 24,8% до 31,3%, остальные крупные фракции будут не востребованы. При этом величина удельной поверхности и насыпной плотности не рассматривались. Испытания по прототипу для проведения исследований удельной поверхности и насыпной плотности, получаемой фракции менее 63 мкм, провести не представляется возможным. Для этого требуется специализированный источник тока для задания линейно изменяющегося напряжения, обеспечивающее линейное изменение плотности тока, так как в процессе наработки порошка непрерывно увеличивается его поверхность, а напряжение снижается. Для поддержания напряжения на заданном уровне необходимо постоянно увеличивать силу тока на ванне, что в пересчете на исходную катодную площадь поверхности дает такие максимальные значения плотности тока от 4100 до 5500 А/м2. Порошок не стряхивается, поэтому истинная площадь поверхности не известна.

Заявленная же задача состоит в одновременном снижении удельной поверхности и насыпной плотности, что затруднительно, так как между данными характеристиками существует обратно пропорциональная зависимость.

Таким образом, рассмотренные технологии не решают поставленной заявителем задачи - получение медного порошка с удельной поверхностью в диапазоне от 1900 см2/г до 2500 см2/г и одновременно низкой насыпной плотностью менее 0,75 г/см3.

Авторами настоящей заявки на изобретение создан способ получения медного электролитического порошка с достижением указанного выше результата. С целью уменьшения удельной поверхности была снижена катодная плотность тока до 2400 А/м2, но этого оказалось недостаточно, так как при этом возросла насыпная плотность порошка выше предельного значения от 0,78 до 0,85 г/см3. Снижение концентрации серной кислоты со 140 до 100 г/дм3 так же не дало нужного результата.

Сущность заявляемого способа заключается в получении медного электролитического порошка при двух катодных плотностях тока 2400 и 2800 А/м2 с последующим их смешиванием. Состав электролита по концентрации серной кислоты поддерживали от 70 до 90 г/дм3 и хлорид-ионов от 6,0 до 9,0 мг/дм3.

При заявленном режиме были проведены опытно-промышленные испытания по наработке порошка фракции менее 63 мкм в течение 2 суток на стержневых медных катодах. Часть порошка была получена при катодной плотности тока 2400 А/м2, а часть - при 2800 А/м2. Затем при одновременной выгрузке электролизных ванн порошки смешивали в репульпаторе. Далее после проведенных стандартных технологических операций были получены товарные партии порошка, для которых определили удельную поверхность и насыпную плотность. Также был реализован вариант одновременного получения в одной электролизной ванне порошка при плотности тока 2400 и 2800 А/м2 (опыт 15, 16, 17), что достигалось различным количеством стержневых медных катодов на восьми катодных штангах по 9 и по 8 стержней, соответственно. Выход порошка фракции менее 63 мкм составил от 85% до 88%.

Результаты испытаний приведены в таблице.

Удельная поверхность всех полученных партий порошка была получена при рекомендованном режиме электролиза в требуемом диапазоне от 1950 до 2500 см2/г, при этом насыпная плотность составила от 0,63 до 0,74 г/см3, что полностью удовлетворяло требованию менее 0,75 г/см3.

Заявляемый способ для получения медного порошка с удельной поверхностью в диапазоне от 1900 до 2500 см2/г и насыпной плотностью менее 0,75 г/см3 отвечает всем критериям патентоспособности.

Сравнительный анализ применяемых технических решений и заявляемого изобретения позволяет сделать вывод, что изобретение неизвестно из уровня техники и соответствует критерию «новизна».

Предлагаемое для патентной защиты изобретение имеет изобретательский уровень, так как его сущность для специалиста, занимающегося электролитическим получением порошков меди, явным образом не следует из известного уровня техники, а значит, не может быть подтверждена известность отличительных признаков на указанный заявителем отличительный результат.

Заявленное изобретение является промышленно применимым, так как оно используется в производстве по своему прямому назначению.

Способ получения медного электролитического порошка с размером частиц менее 63 мкм с удельной поверхностью в диапазоне от 1900 до 2500 см2/г и насыпной плотностью менее 0,75 г/см3, включающий электролиз, промывку от электролита, отличающийся тем, что электролиз ведут на стержневых медных катодах в электролите с серной кислотой при двух катодных плотностях тока 2400 и 2800 А/м2 со смешиванием полученных фракций порошков.



 

Похожие патенты:
Изобретение может быть использовано в неорганической химии. Способ получения оксида меди (I) включает электрохимическое окисление и диспергирование электродов в электролизере в растворе хлорида натрия.

Изобретение относится к порошковой металлургии. Способ получения наноразмерных частиц включает электроплазменную обработку поверхности электролита в виде солевого раствора, содержащего индуцированные ионы металлов или полупроводников с формированием из них частиц заданного размера.

Изобретение относится к порошковой металлургии. Мелкодисперсный порошок серебра получают электролизом раствора азотнокислого серебра с концентрацией серебра 15-60 г/дм3 и свободной азотной кислоты 5-20 г/дм3 при постоянном токе плотностью 1,5-2,0 А/дм2.
Изобретение относится к порошковой металлургии. Способ электрохимического получения металлического порошка включает электролиз раствора солей металлов с катодным восстановлением ионов металлов в условиях плазмы.

Изобретение относится к области порошковой металлургии, в частности к способу получения порошков металлов методом электролиза. Способ включает использование растворимых и нерастворимых анодов одновременно, при этом водный раствор электролита содержит соль соответствующего металла и буферные добавки.
Изобретение относится к получению ультрамикродисперсного порошка оксида никеля. Способ включает получение порошка оксида никеля из металлических никелевых электродов электролизом в щелочном растворе гидроксида натрия.

Изобретение относится к области металлургии, в частности к получению медных порошков. Способ получения медного электролитического порошка с содержанием кислорода не более 0,15% включает электролиз, промывку от электролита, стабилизацию, отмывку от избытка стабилизатора, сушку, размол и просев.
Изобретение относится к порошковой металлургии, в частности к получению электролитических металлических порошков. Может использоваться в производстве катализаторов, гальванопластике, электронике.

Изобретение относится к электролитическому получению мелкодисперсных металлических порошков. Проводят электроосаждение металла на подложку из электропроводного материала, индиферентного по отношению к осаждаемому материалу и обладающего низкой теплопроводностью.
Изобретение относится к области гидрометаллургии редких элементов, а именно к способам глубокой очистки висмута от Ag, Te, Po при использовании солянокислых растворов.

Изобретение относится к способу экстракции железа из водных растворов и может быть использовано в цветной и черной металлургии, а также для очистки промышленных и бытовых стоков.

Изобретение относится к металлургической отрасли, в частности к способу получения меди. Способ электролитического получения меди включает электролитическое анодное растворение медьсодержащего сырья в сернокислом медьсодержащем электролите с осаждением меди на катоде.
Изобретение относится к металлургической отрасли, в частности к способу выделения серебра из медного серебросодержащего сплава в процессе электролитического получения меди.

Изобретение относится к области металлургии, в частности к получению медных порошков. Способ получения медного электролитического порошка с содержанием кислорода не более 0,15% включает электролиз, промывку от электролита, стабилизацию, отмывку от избытка стабилизатора, сушку, размол и просев.
Изобретение относится к металлургии цветных металлов и может быть использовано на предприятиях по получению цветных, благородных металлов и их сплавов, получаемых при утилизации электронных приборов и деталей.

Изобретение относится к области электрохимических методов получения медных порошков и может найти применение в производстве катализаторов, порошковой металлургии, антифрикционных смазках, гальванопластике, процессах очистки стоков от ионов меди.

Изобретение относится к способу получения высококачественной меди. .
Изобретение относится к гидрометаллургическому использованию катодов, полученных путем электролиза. .
Изобретение относится к способу переработки сульфидных медно-никелевых сплавов. .
Изобретение относится к способу извлечения меди из сульфидных или оксидных руд. .
Изобретение относится к способу выщелачивания оксида меди без использования серной кислоты. Способ включает пропитку руды, содержащей оксид меди, органическим незагрязняющим выщелачивающим агентом, представляющим собой водный раствор, состоящий из трикарбоновой кислоты (С6Н8О7) и воды (H2O) и имеющий рН в диапазоне от 1,0 до 5,0. Затем ведут орошение штабеля руды выщелачивающим агентом для получения раствора цитрата меди. При этом проводят дополнительное орошение пропитанного штабеля руды указанным органическим не загрязняющим выщелачивающим агентом для повышения концентрации цитрата меди и электроосаждение меди. Техническим результатом является повышение эффективности и безопасности процесса и исключение загрязнения среды. 5 з.п. ф-лы, 3 табл., 1 пр.
Наверх