Анод электролизера для получения порошков сплавов металлов


C25B11/08 - Электролитические способы; электрофорез; устройства для них (электродиализ, электроосмос, разделение жидкостей с помощью электричества B01D; обработка металла воздействием электрического тока высокой плотности B23H; обработка воды, промышленных и бытовых сточных вод или отстоя сточных вод электрохимическими способами C02F 1/46; поверхностная обработка металлического материала или покрытия, включающая по крайней мере один способ, охватываемый классом C23 и по крайней мере другой способ, охватываемый этим классом, C23C 28/00, C23F 17/00; анодная или катодная защита C23F; электролитические способы получения монокристаллов C30B; металлизация текстильных изделий D06M 11/83; декоративная обработка текстильных изделий местной

Владельцы патента RU 2657747:

Общество с ограниченной ответственностью "БИНАКОР-ХТ" (ООО "БИНАКОР-ХТ") (RU)

Изобретение относится к нерастворимому аноду электролизеров для получения сплавов металлов в порошкообразном виде. Рабочая часть анода состоит из диэлектрической подложки с активным слоем, содержащим спеченную смесь оксида рутения и оксидного стекла в объемном соотношении от 4/1 до 2/1. Обеспечивается надежность анода за счет исключения из рабочей части анода токоподвода из металла, при этом токоподвод осуществляется самим активным слоем, а необходимый потенциал анода подается на активный слой прижимным контактом за пределами рабочей части анода выше уровня электролита.

 

Настоящее изобретение относится к нерастворимому аноду электролизеров для получения сплавов металлов в порошкообразном виде. Такой анод может быть использован в электролизерах для извлечения металлов из водных растворов, а также для получения кислорода.

Известен анод для электроэкстракции металлов из водных растворов (Патент РФ №2266982 опубл. 27.12.2005), имеющий рабочую часть, выполненную в виде элемента из титана с покрытием из оксидов платиновых металлов.

Недостатком данного анода является его ненадежность вследствие возможного выхода его из строя в процессе эксплуатации. Выход из строя происходит при нарушении целостности покрытия по той или иной причине. Например: царапины, отслоение, растравливание. При этом появляется возможность доступа электролита к поверхности металла, где развивается нежелательная электрохимическая реакция.

Известен анод для выделения кислорода (Патент РФ №2304640 опубл. 20.08.2007), имеющий подложку из металла и защитное покрытие, поверх которого нанесен слой благородного металла или смесь благородных металлов в чистом виде или в виде оксидов.

Надежность такого анода выше, чем у предыдущего, однако она недостаточна вследствие наличия металлической подложки.

Известен также анод (Патент РФ №2568546 опубл. 20.11.2015), принятый за прототип, рабочая часть которого выполнена из металла, покрытого защитным слоем и слоем из благородных и других металлов и их оксидов, включая аморфные оксиды рутения и тантала.

Надежность такого анода выше, но недостаточна вследствие наличия у него металлического основания. Кроме того, такой анод сложен в изготовлении и имеет высокую стоимость.

Технической задачей предлагаемого изобретения является повышение надежности анода для получения порошков сплавов металлов.

Техническая задача решается тем, что рабочая часть анода состоит из диэлектрической подложки с активным слоем, который содержит спеченную смесь оксида рутения и оксидного стекла в объемном соотношении от 4/1 до 2/1.

Решение технической задачи обеспечивается вследствие исключения из рабочей части анода токоподвода из металла. Тем самым исключается сама причина ненадежности анода, которая возникает из-за возможного взаимодействия металла токоподвода рабочей части анода с компонентами электролита. В предлагаемом решении токоподвод осуществляется самим активным слоем. При этом отпадает необходимость в наличии металлического токоподвода к активному слою. Необходимый потенциал анода подается на активный слой прижимным контактом за пределами рабочей части анода выше уровня электролита. Спеченная смесь оксида рутения и оксидного стекла обладает достаточной электропроводностью, которая зависит от содержания оксида рутения. Содержание стекла в смеси должно быть не менее 20%. При меньшем содержании стекла может нарушиться целостность слоя, так как при спекании слоя этого количества расплавленного стекла не хватает для смачивания всей поверхности порошка оксида рутения и поверхности керамической подложки для соединения слоя в единое целое. При содержании стекла более 30% электропропроводность слоя заметно снижается, что приводит к непроизводительным потерям электроэнергии.

Изготовление анода и получение порошка проводят следующим образом.

На подложку размером 46×20×1 мм из материала ВК94-2 (94% Al2O3) наносят смесь порошков оксида рутения и свинцовоборосиликатного стекла в соотношении 4/1 в виде пасты с временным и выгорающим при термообработке связующим из этилцеллюлозы, растворенной в терпинеоле. Термообработку проводят в муфельной печи при температуре 800°С в течение 30 минут. Поверхностное электросопротивление слоя составляет 80-100 Ом/квадрат. Готовый анод с помощью прижимного контакта соединяют с положительным полюсом источника питания постоянного тока и помещают в электролит, содержащий 0,1 моль/л сульфатов никеля и железа с добавкой сульфата аммония. Электролиз проводят при токе 5А в течение 1 часа. По окончании процесса анод извлекают, промывают и высушивают. В другом варианте анода в качестве диэлектрической подложки берут пластину из ситалла размером 60×48×0,5 мм марки СТ50-1. Смесь порошков оксида рутения и цинкборосиликатного стекла берут в соотношении 2/1. При этом поверхностное сопротивление составляет 45-75 Ом/квадрат. Получение порошка проводят в течение 10 часов при токе 10 А в сернокислом медьсодержащем электролите. В обоих случаях никаких изменений на поверхности анода не наблюдается. При этом плотность тока на аноде составляет до 500 мА/см2 в отличие от прототипа, где плотность тока не превышает 50 мА/см2. Анод, изготовленный по прототипу, при плотности тока 300-500 мА/см2 начинает разрушаться в течение первых часов испытаний.

Таким образом, надежность заявляемого анода значительно выше прототипа. Кроме того, изготовление такого анода проще, чем по прототипу.

Анод электролизера для получения порошков сплавов металлов, включающий рабочую часть с активным слоем, отличающийся тем, что рабочая часть выполнена из диэлектрика с активным слоем, содержащим спеченную смесь оксида рутения и оксидного стекла в объемном соотношении от 4/1 до 2/1.



 

Похожие патенты:
Изобретение относится к области металлургии благородных металлов, в частности к извлечению серебра из кислых растворов нитрата серебра методом электроэкстракции с использованием нерастворимых термообработанных титановых анодов.

Изобретение относится к извлечению индия электролизом. Предложен электролизер экстракции индия из выпуска расплава конденсата рафинирования чернового олова из вакуумной печи.

Изобретение относится к технологии изготовления медно-титановых токопроводящих контактных элементов. Медный и титановый компоненты сопрягают друг с другом и соединяют в медно-титановый токопроводящий контактный элемент.

Изобретение может быть использовано при изготовлении электрохимического анода, сформированного с использованием сварки трением с перемешиванием (FSW). Электрохимический анод включает токопроводящую шину и свинецсодержащий анодный лист, электрически связанный с токопроводящей шиной.

Изобретение относится к аноду для выделения кислорода при высоком анодном потенциале, содержащему основу из титана или его сплавов, первый промежуточный слой диоксида марганца, нанесенный на основу, второй промежуточный слой оксидов олова и сурьмы, нанесенный на первый промежуточный слой, и внешний слой, состоящий из диоксида свинца.

Группа изобретений относится к электролизу в растворе электролита на основе серной кислоты. Анод для электровыделения металла в растворе электролита на основе серной кислоты выполнен в виде сформированного на проводящей подложке каталитического слоя из аморфного оксида рутения и аморфного оксида тантала.

Изобретение относится к постоянному катоду, используемому в качестве электрода при электролитическом получении металлов. Катод содержит пластину, по меньшей мере, частично изготовленную из стали, при этом размеры границ зерен на поверхности пластины постоянного катода установлены из условий обеспечения возможности сцепления осажденного металла с поверхностью и удаления металла с поверхности, по меньшей мере, на части поверхности, находящейся в контакте с электролитом, причем пластина выполнена с областью поверхности с сильными свойствами сцепления с осаждаемым металлом и областью поверхности со слабыми свойствами сцепления с осаждаемым металлом, которая расположена в месте начала отделения осажденного металла, причем указанные свойства сцепления поверхности пластины связаны с размерами границ зерен на указанной области поверхности.

Изобретение относится к аноду для выделения хлора при электролизе из водного раствора. Анод имеет сформированный на проводящей подложке каталитический слой, содержащий аморфный оксид рутения и аморфный оксид тантала.

Изобретение относится к порошковой металлургии. Способ получения наноразмерных частиц включает электроплазменную обработку поверхности электролита в виде солевого раствора, содержащего индуцированные ионы металлов или полупроводников с формированием из них частиц заданного размера.

Изобретение относится к металлургии. Электрохимический реактор типа фильтр-пресс для извлечения серебра Ag(I) и золота Au(I) из растворов выщелачивания рудных пород включает анодное отделение и катодное отделение, отделенные друг от друга анионной мембраной, первый электрод в качестве анода в анодном отделении и второй электрод в качестве катода в катодном отделении.

Изобретение относится к получению металлического кальция. Способ включает электролиз растворов его солей, который проводят в апротонном растворителе в виде диметилсульфоксида, или диметилацетамида, или их смеси.

Изобретение относится к порошковой металлургии и может быть использовано для производства паяльных паст. Электролизер для получения порошка припоя содержит ванну, заполненную электролитом, анод, выполненный в виде кольцевого цилиндра, соосно помещенный в анод катод, выполненный в виде пакета электроизолированных игл, установленных остриями в направлении анода.

Изобретение относится получению нанопорошка меди. Способ получения нанопорошка меди включает растворение медного анода с последующим восстановлением меди из электролита на титановом рифленом виброкатоде, по окончании электролиза полученный медный нанопорошок фильтруют под избыточным давлением инертного газа, промывают дистиллированной водой из расчета 1 л воды на 100 г нанопорошка и сушат при температуре 90-110°С в атмосфере аргона в течение 30-45 минут.

Изобретение может быть использовано при производстве паяльных паст. Получают суспензию порошка припоя с электролитом в ванне электролизера.

Изобретение относится к получению медьсодержащего материала в виде металлической подложки с нанесенными на нее микрочастицами меди. Ведут электроосаждение на металлическую подложку монослоя икосаэдрических микрочастиц меди с размером от 5 мкм до 15 мкм, обладающих шестью осями симметрии пятого порядка, из электролита в виде сернокислого медного раствора при перенапряжении 30-150 мВ.

Изобретение относится к технологии получения медного электролитического порошка с размером частиц менее 63 мкм с удельной поверхностью в диапазоне от 1900 до 2500 см2/г и насыпной плотностью менее 0,75 г/см3.
Изобретение может быть использовано в неорганической химии. Способ получения оксида меди (I) включает электрохимическое окисление и диспергирование электродов в электролизере в растворе хлорида натрия.

Изобретение относится к порошковой металлургии. Способ получения наноразмерных частиц включает электроплазменную обработку поверхности электролита в виде солевого раствора, содержащего индуцированные ионы металлов или полупроводников с формированием из них частиц заданного размера.

Изобретение относится к порошковой металлургии. Мелкодисперсный порошок серебра получают электролизом раствора азотнокислого серебра с концентрацией серебра 15-60 г/дм3 и свободной азотной кислоты 5-20 г/дм3 при постоянном токе плотностью 1,5-2,0 А/дм2.
Изобретение относится к порошковой металлургии. Способ электрохимического получения металлического порошка включает электролиз раствора солей металлов с катодным восстановлением ионов металлов в условиях плазмы.

Изобретение относится к переработке полиметаллического сырья для извлечения цветных металлов. Способ включает анодное выщелачивание сырья водным раствором, содержащим соляную кислоту, и катодное осаждение электроположительных металлов в диафрагменном электролизере с анодным и катодным пространствами, разделенными катионообменными мембранами.
Наверх