Способ получения кристаллов кремния с циклической двойниковой структурой
Изобретение относится к производству полупроводниковых слитков и пластин, в частности кристаллов кремния с циклической двойниковой структурой. Сущность изобретения при получении кристаллов кремния с циклической двойниковой структурой путем выращивания из расплава методом Чохральского на затравку с циклической двойниковой структурой от базовой - трехзеренной, образованной двумя когерентными плоскостями двойникования первого порядка и одной границей двойникования второго порядка, до полной циклической двойниковой структуры, образованной двадцатью когерентными плоскостями двойникования первого порядка, четырьмя границами двойникования второго порядка, шестью границами двойникования третьего порядка и четным числом дополнительных плоскостей двойникования первого порядка, параллельных указанным двадцати, согласно изобретению выращивание производят с введением в расплав кремния добавок, выбранных из ряда германий, олово, свинец, при этом концентрация добавок по отношению к кремния составляет 1,010-7-15 вес.%. Изобретение позволяет увеличить длину выращиваемых кристаллов кремния с циклической двойниковой структурой без поликристаллических включений и, следовательно, увеличить производительность процесса получения этих кристаллов. 1 табл.
Настоящее изобретение относится к области производства полупроводниковых слитков и пластин, которые могут быть использованы, например, при производстве солнечных элементов. В частности, настоящее изобретение касается циклически сдвойникованных кристаллов полупроводниковых материалов, особенно кремния, кристаллизующихся в алмазную кубическую решетку, и метода их получения.
Основными материалами, используемыми для изготовления солнечных элементов, являются бездислокационные монокристаллы кремния, получаемые методом Чохральского, и мультикристаллический кремний, получаемый методом литья. Сырьем, использующимся в этих методах, является поликристаллический кремний-сырец полупроводниковой чистоты, а также отходы монокристаллических слитков кремния, предназначенных для микро- и силовой электроники и полученных методом Чохральского и бестигельной зонной плавки из поликристаллического кремния-сырца. Грубая оценка показывает, что для удовлетворения мирового спроса в солнечных элементах, равного ~1400 МВт/год, необходимо приблизительно 84000 тонн исходного поликристаллического кремния-сырца для получения бездислокационных монокристаллов кремния методом Чохральского и мультикристаллических слитков кремния методом литья. Поликристаллический кремний-сырец является, прежде всего, сырьем для получения монокристаллов кремния, предназначенных для микроэлектроники. Стоимость этого сырья слишком высока (~50 USD/кг), чтобы использовать его для получения подложечного материала солнечных элементов. В то же время невозможно использовать кремний низкого качества, типа очищенного металлургического кремния, для получения бездислокационного кремния, из-за чрезвычайной чувствительности процесса бездислокационного роста кристаллов к примесям (загрязнениям) и инородным частицам, даже если они мельчайших размеров. Для использования дешевого исходного сырья низкого качества в производстве материала подложки для кремниевых солнечных элементов с достаточно высоким к.п.д. необходима разработка специального метода получения кристаллов кремния с приемлемой структурой и физическими свойствами. Другой задачей в производстве солнечных элементов является значительное сокращение толщины используемых подложек (пластин) с целью снижения стоимости солнечных элементов и использования кристаллов кремния с низким временем жизни неосновных носителей заряда для изготовления солнечных элементов с высоким к.п.д. Несмотря на то, что кремний как материал является достаточно твердым, монокристаллы кремния очень хрупки из-за наличия в них четырех плоскостей { 111} , являющихся плоскостями скола, полностью пересекающими монокристалл. Это является основной причиной, из-за которой тонкие пластины кремния очень легко ломаются. Поэтому резка монокристаллов кремния на очень тонкие пластины с высоким процентом выхода практически невозможна. В связи с этим представляется, что крупнозернистые кристаллы кремния с регулярной структурой могли бы быть подходящим материалом для решения этой проблемы. Первые попытки разработки метода получения крупнозернистых кремниевых кристаллов с регулярной двойниковой структурой для использования в солнечных элементах были сделаны Дж. Мартинелли и Р. Кибизовым в 1992 г. (см. G. Martinelli, R. Kibizov "Growth of stable dislocation-free 3-grain silicon ingots for thinner slicing." Appl. Phys. Letters, Vol.62, June 21, 1993, pp. 3262-3263). Полученный материал представлял собой полупроводниковый кристаллический кремний с тремя смежными, секториально расположенными монокристаллическими зонами - так называемый трехзеренный кремний. В этой работе продемонстрирована возможность сверхтонкой резки трехзеренных слитков кремния на пластины и показана возможность их использования для изготовления высокоэффективных солнечных элементов. Один из способов получения трехзеренных кристаллов кремния описан в патенте ФРГ 4343296 С2 (публ. 12.09.96, Н 01 L 31/036). Процесс включает подготовку затравочных кристаллов путем выпиливания из монокристалла кремния трех правильных октаэдров со всеми поверхностями, выровненными по кристаллографическим плоскостям {111}; далее выращивание из расплава двухзеренного слитка путем использования в качестве затравки двух подготовленных октаэдров, расположенных друг относительно друга в двойниковом положении и связанных друг с другом молибденовой проволокой; далее выпиливание по плоскостям { 111} призматического сектора из выращенного слитка; вставление третьего октаэдра в двойниковом положении в вырезанный призматический сектор выращенного кристалла и связывание их вместе молибденовой проволокой; укорочение двухзеренного кристалла до длины третьего вставленного октаэдра и, наконец, выращивание из расплава кремния трехзеренного кристалла посредством подготовленного таким образом затравочного кристалла. Посредством этого патентованного процесса можно получать трехзеренные кристаллы, однако этот процесс имеет ряд недостатков: 1) Очень трудно изготавливать октаэдрические кристаллы и вырезать призматический сектор с поверхностями, имеющими точную кристаллографическую ориентацию { 111} , а также очень трудно осуществлять механическое соединение октаэдрических кристаллов и октаэдрического кристалла с плоскостью выреза двухзеренного кристалла в точном двойниковом положении и с точным совпадением кристаллических решеток. Это обстоятельство подразумевает создание напряжений и структурных дефектов в выращенном слитке по границам двойников. 2) Использование в качестве затравок кристаллов в виде связанных друг с другом октаэдров является технически чрезвычайно сложным из-за большой величины отношения диаметра к длине, равной приблизительно 2. В обычной технологии выращивания кремниевых слитков используемые затравочные кристаллы имеют диаметр приблизительно 12 мм и длину 100-150 мм. Также возможно использовать затравки длиной 30-50 мм, но не короче. Но в случае использования в качестве затравок связанных октаэдров при их длине, равной 30-50 мм, их диаметр будет составлять 60-100 мм, что делает процесс роста весьма затруднительным. 3) Выращивание трехзеренных слитков при несколько более высоких скоростях вытягивания, чем монокристаллических слитков возможно благодаря формированию на фронте кристаллизации так называемых входящих углов, образованных плоскостями { 111} , в местах выхода двойниковых границ. Как показано R.S. Wagner (Acta Metallurgica. Vol. 8, 1960, pp. 57-60) и D.R. Hamilton и R.G. Seidensticker (Journal of Applied Physics. Vol. 31, 1960, pp. 1165-1168), эти входящие углы образуют области (места) наиболее легкого зародышеобразования. Однако в вышеупомянутых работах также показано, что условием самовоспроизведения входящих углов и быстрого роста кристалла является наличие, по крайней мере, двух или более близко расположенных плоскостей двойникования. В противном случае входящие углы выклиниваются и быстрый рост прекращается. Наиболее близким является патент Финляндии 106729 (публ. 30.03.2001 г., С 30 В 15/00), в котором предложены простые в практической реализации методы изготовления затравочных кристаллов, слитков и пластин с циклической двойниковой структурой и кристаллы с циклической двойниковой структурой от базовой - трехзеренной, до полной - двадцатизеренной. Такие двойниковые кристаллы содержат когерентные плоскости двойникования первого порядка, двойниковые границы второго порядка и могут содержать двойниковые границы третьего порядка. Метод выращивания кристаллов кремния с циклической двойниковой структурой имеет ряд достоинств, к которым можно отнести: 1) Возможность радикального усовершенствования технологии выращивания (например, использование многократного полунепрерывного выращивания), позволяющего снизить стоимость этих кристаллов. 2) Возможность использования исходного сырья низкого качества (низкой стоимости) без ухудшения параметров приборов (солнечных элементов), изготавливаемых на основе кристаллов с циклической двойниковой структурой, и снижения за счет этого стоимости. 3) Возможность осуществления сверхтонкой резки на пластины кристаллов с циклической двойниковой структурой за счет упрочнения кристаллов двойниковыми плоскостями и границами и снижения за счет этого стоимости. Однако метод получения кристаллов с циклической двойниковой структурой, описанный в патенте Финляндии 106729, не позволяет осуществлять их выращивание достаточной длины, что ограничивает производительность и сдерживает дальнейшее снижение себестоимости. Известно, что когерентные плоскости двойникования первого порядка не являются электрически активными, поскольку такое двойникование не приводит к образованию оборванных и искаженных связей. Двойниковые границы же второго и более высоких порядков являются по природе дефектными. Они возникают, как правило, в результате срастания двойниковых индивидов. Такое срастание приводит к образованию искаженных и оборванных связей. При этом чем выше порядок двойниковой границы, тем более дефектной является эта граница. Кроме того, строение двойниковых границ второго и третьего порядков помимо кристаллографических факторов зависит от условий выращивания и может отличаться от равновесного строения. В связи с этим, несмотря на довольно устойчивый и воспроизводимый рост кристаллов с циклической двойниковой структурой, выращивание этих кристаллов большой длины без потери регулярной структуры затруднено. Как правило, по мере роста таких кристаллов происходит генерация дислокаций от некогерентных двойниковых границ (второго и третьего порядков). В результате, начиная с длины ~250





Формула изобретения
Способ получения кристаллов кремния с циклической двойниковой структурой путем выращивания из расплава методом Чохральского на затравку с циклической двойниковой структурой от базовой - трехзеренной, образованной двумя когерентными плоскостями двойникования первого порядка и одной границей двойникования второго порядка, до полной циклической двойниковой структуры, образованной двадцатью когерентными плоскостями двойникования первого порядка, четырьмя границами двойникования второго порядка, шестью границами двойникования третьего порядка и четным числом дополнительных плоскостей двойникования первого порядка, параллельных указанным двадцати, отличающийся тем, что выращивание производят с введением в расплав кремния добавок, выбранных из ряда германий, олово, свинец, при этом концентрация добавок по отношению к кремнию составляет 1,0
РИСУНКИ
Рисунок 1PD4A - Изменение наименования обладателя патента Российской Федерации на изобретение
(73) Новое наименование патентообладателя:АКРЕМА АГ (CH)
Извещение опубликовано: 20.09.2006 БИ: 26/2006
MM4A - Досрочное прекращение действия патента СССР или патента Российской Федерации на изобретение из-за неуплаты в установленный срок пошлины за поддержание патента в силе
Дата прекращения действия патента: 17.07.2008
Извещение опубликовано: 10.12.2009 БИ: 34/2009