Композиционная опора скольжения и способ ее изготовления
Изобретение относится к области машиностроения и может быть использовано в конструкциях подшипниковых узлов. Композиционная опора скольжения содержит последовательно расположенные стальную основу, слой алюминия или его сплава и слой оксидокерамики. При этом между стальной основой и слоем алюминия или его сплава дополнительно размещают слой термопластичного полимера, выбранного из группы, включающей полиамид, поливинилхлорид, полиэтилен, полиэтилентерефталат. Стальная основа имеет расположенные в шахматном порядке выступы и впадины, высота профиля которых превышает толщину полимерного слоя в 1,2...1,4 раза, а слой алюминия или его сплава имеет комплементарную полимерному слою поверхность. Технический результат: повышение прочностных и улучшение виброизолирующих характеристик. 2 с.п.ф-лы, 1 ил., 1 табл.
Изобретение относится к деталям машин и может быть использовано в конструкциях подшипниковых узлов, опорах скольжения, парах трения и других устройствах, применяемых в машиностроительной, металлообрабатывающей, станкостроительной, авиационной, приборостроительной промышленности.
Известны многослойный подшипник скольжения для двигателей внутреннего сгорания и способ его изготовления (патент ФРГ 3934141, кл. F 16 С 33/12, опубл. 1990), содержащий корпус с покрытием из слоистого пластика. При изготовлении многослойного подшипника скольжения слоистый пластик наносится на корпус с помощью клеевых составов, являющихся промежуточным и связующим элементом рабочих слоев из слоистого пластика. Существенным недостатком этого подшипника является относительно невысокий диапазон допустимых удельных нагрузок. Из известных аналогов наиболее близким техническим решением к предлагаемому изобретению является композиционный подшипник скольжения и способ его изготовления (патент ФРГ 4038139, кл. F 16 С 33/10, опубл. 1990). Этот подшипник содержит стальную основу, на которую нанесен слой алюминия, и на последнем сформирован рабочий слой оксида алюминия, пропитанный твердой смазкой. Способ изготовления подшипника включает литьевое формирование на стальной основе слоя алюминия или его сплава и его последующее оксидирование. Недостатком этого подшипника является низкая адгезия между слоями, поскольку промежуточный слой алюминия литьевым методом нанесен на гладкую стальную основу. При его работе даже относительно невысокие касательные напряжения могут приводить к сдвигу слоя алюминия с образованием трещин и микродефектов, в результате чего в последующем разрушается весь композитный слой. Кроме того, подшипник имеет относительно низкую демпфирующую способность, поскольку содержит слои из достаточно жесткого материала с высоким модулем упругости, имеющего ограниченные возможности гашения колебаний и вибраций. Способ изготовления подшипника не позволяет сформировать тонкий (40-200 мкм) промежуточный слой с высокими виброизолирующими и демпфирующими свойствами. Указанные недостатки существенно снижают прочностные и виброакустические характеристики подшипника, ухудшают его эксплуатационные свойства. Задачей изобретения является создание композиционной опоры скольжения с повышенными прочностными и улучшенными виброизолирующими характеристиками и способа ее изготовления, позволяющего обеспечить эти качества. Для решения поставленной задачи в композиционной опоре скольжения, содержащей последовательно расположенные стальную основу, слой алюминия или его сплава и слой оксидокерамики, согласно изобретению между стальной основой и слоем из алюминия или его сплава дополнительно размещают слой из термопластичного полимера из группы, включающей полиамид, полиэтилентерефталат, поливинилхлорид, полиэтилен, при этом стальная основа имеет расположенные в шахматном порядке выступы и впадины, высота профиля которых превышает толщину полимерного слоя в 1,2...1,4 раза, а слой алюминия или его сплава имеет комплиментарную полимерному слою поверхность и толщину, выбираемую из соотношения







N - коэффициент, равный 4,2...4,5;


с1 - удельная теплоемкость Дж/кг

а - температуропроводность м2/с полимерного слоя;
с,


К - коэффициент, равный 1,15


- при значении, меньшем минимально допустимого, жесткость алюминиевого кольцевого элемента недостаточна и при нормальном по отношению к наружной поверхности локализованном нагружении он прогибается, что вызывает хрупкое разрушение поверхностного оксидокерамического слоя;
- при значении, большем или равном минимально допустимого, необходимую жесткость алюминиевого кольцевого элемента, исключающую при нормальном по отношению к наружной поверхности локализованном нагружении его "прогиб" и связанное с этим хрупкое разрушение поверхностного оксидокерамического слоя;
- при значении, меньшем или равном максимально допустимого, высокую эффективность композиционной опоры с позиций виброизоляции и виброакустики в целом;
- при значении, большем максимально допустимому, эффективность композиционной опоры с позиций виброизоляции и виброакустики существенно снижается при одновременном увеличении себестоимости ее создания за счет необходимости нанесения газопламенным напылением значительных по толщине слоев алюминия. Для формирования слоев был выбран метод газопламенного напыления, поскольку именно этим способом с наибольшей эффективностью на поверхностях различных конфигураций можно формировать покрытия из легкоплавких материалов толщиной от двух десятков микрон до нескольких миллиметров, не перегревая при этом материал подложки и повторяя ее профиль. Толщина полимерного слоя зависит от технологических режимов нанесения последующего слоя из алюминия и его сплавов. Чем больше размер частиц напыляемого алюминия и их температура, тем большую толщину должен иметь полимерный слой, чтобы не разрушиться от теплового воздействия первых частиц, падающих на его поверхность. Эта полуэмпирическая зависимость была установлена на основе проведенных в ИНДМАШ НАН Беларуси экспериментальных исследований. В таблице приведены значения толщины промежуточных слоев из различных полимеров при напылении частиц алюминия с различной температурой. Пример реализации изобретения
На цилиндрической заготовке диаметром


После этого на слое полимера с помощью газопламенного напыления был сформирован слой алюминия толщиной 3,4 мм, определенной по формуле

Формирование алюминиевого слоя осуществлено частицами алюминия со средним размером 70 мкм при температуре 1200oС. При этом поверхность слоя алюминия, контактирующая с полимером, образует комплиментарную полимерной поверхность. Затем преобразованием наружного поверхностного слоя алюминия микродуговой обработкой при напряжении 420 В и плотности тока 18 А/дм2 был сформирован слой оксидокерамики толщиной 150 мкм. Исследования прочности на сдвиг в окружном направлении и виброизолирующих свойств опоры (подшипника) скольжения показали высокие надежность, износостойкость и виброизолирующие свойства, в комплексе превышающие свойства аналогов и прототипа. Реализация предлагаемого технического решения позволяет создать для различных устройств высокоэффективные опоры скольжения, работающие в условиях жидкостного трения или с консистентными смазками.
Формула изобретения




где

Кф - коэффициент, учитывающий форму рабочей поверхности опоры скольжения (для цилиндрической замкнутой опоры скольжения Кф=R, где R - радиус рабочей поверхности цилиндрической опоры скольжения);
Суд - удельная контактная жесткость полимера;
Еа - модуль упругости алюминия или его сплава. 2. Способ изготовления композиционной опоры скольжения, включающий формирование на стальной основе слоя алюминия или его сплавов и его последующее оксидирование, отличающийся тем, что на основу предварительно наносят слой термопластичного полимера, причем формирование слоев осуществляют газопламенным методом, а толщину полимерного слоя определяют из соотношения

где

D - диаметр капли распыленного алюминия или его сплава, м;


N - коэффициент, равный 4,2...4,5;


с1 - удельная теплоемкость Дж/кг

а - температуропроводность м2/с полимерного слоя;
с,


К - коэффициент, равный 1,15


РИСУНКИ
Рисунок 1, Рисунок 2