Опорно-приводное устройство
Изобретение относится к опорно-приводным устройствам для узлов накопления информации, преимущественно жестких дисков компьютеров. Опорно-приводное устройство содержит электродвигатель со статором и ротором, газодинамическую опору с подшипниками скольжения, подвижные элементы которых образованы соответствующими участками внутренней поверхности ротора, а сопряженные с ними неподвижные элементы установлены на оси, закрепленной на основании. Устройство выполнено с расположенными на опоре поверхностными канавками, предназначенными для расклинивания газом подвижных и неподвижных элементов подшипников, при этом каждая из рабочих поверхностей подвижных и неподвижных элементов подшипников является частью поверхности сферы. Каждый из двух подшипников имеет свой радиус кривизны рабочей поверхности. Электродвигатель является торцевым, при этом ротор выполнен из двух немагнитных, установленных один внутри другого цилиндров с фланцами на торцах, а статор размещен между фланцами цилиндров и выполнен в виде несущей якорной обмотки платы из немагнитного материала. Технический результат - исключение загрязнения информационных дисков жидкой смазкой, исключение вибраций и перекосов. 4 з.п. ф-лы, 9 ил.
Изобретение относится к опорно-приводным устройствам, включающим в себя электродвигатель и газодинамическую опору (ГДО). Предпочтительная область применения - узлы накопления информации (жесткие диски, магнитооптические накопители, устройства для считывания компакт-дисков и т.д.), однако устройство может быть использовано для вращения полигонального зеркала лазерного принтера, сканера видеокамеры и т.д.
Известны опорно-приводные устройства с электродвигателями, в частности торцевыми, и опорами, состоящими из радиальных подшипников качения и упорных подпятников (ЕР 0561463 Н 02 К 1/27, 22.09.93; US 4839551 Н 02 К 5/16, 13.06.89). Однако известные устройства указанной конструкции из-за несовершенных технических характеристик получили распространение лишь в низкоскоростных конструкциях. В шпиндель-моторах накопителей на жестких магнитных дисках необходимость повышения скорости вращения ротора при одновременном обеспечении требований к увеличению ресурса безотказной работы и снижению собственной вибрации заставляет рассматривать в качестве альтернативы шарикоподшипникам более приемлемые подшипники скольжения с газовой и жидкой смазкой, которые в определенных условиях позволяют добиться существенного снижения уровня собственной вибрации и нестабильной составляющей биения поверхностей шпиндель-мотора, а также повышение срока службы. Известно опорно-приводное устройство, в котором имеется торцевой электродвигатель с ротором и статором, на поверхностях которых, обращенных друг к другу, выполнены канавки, создающие динамическое давление жидкости при перемещении поверхностей (ЕР 0229911, Н 02 К 5/16, 29.07.87). Недостаток известного устройства связан со значительными тепловыми потерями в используемой опоре, что отрицательно сказывается на общем КПД. Наиболее близким к предложенному является опорно-приводное устройство (шпиндель-мотор) для накопителя информации по патенту US 5543984 G 11 В 17/035, 06.08.96, в котором для повышения точности поддержания параметров вращения ротора в газодинамической опоре используется подшипник овального скольжения с жидкой смазкой, имеющий одну плоскую торцевую рабочую поверхность со спиральными канавками, обеспечивающими несущую способность и жесткость в одном осевом направлении, и примыкающую к плоской одну цилиндрическую рабочую поверхность, обеспечивающую радиальную несущую способность. Для создания осевой жесткости в противоположном направлении предусмотрена специальная опорная плата со скосами. Рабочая поверхность платы располагается вблизи поверхности информационного диска накопителя, что предопределяет осевую жесткость и несущую способность при вращении указанного диска за счет затягивания воздуха в зазор, образуемый диском и опорной платой. Для снижения габаритов электродвигатель в этом устройстве имеет осевой рабочий зазор, что позволяет более компактно разместить ротор и статор, чем в случае с радиальным магнитным потоком в рабочем зазоре электродвигателя. Недостатком указанного опорно-приводного устройства и, в частности, его опорной системы являются: - неизбежные перекосы в рабочем режиме и как следствие повышенная вибрация и нестабильные биения базовых поверхностей, возникающие из-за несимметрии жидкостного подшипника; - нестабильность жесткостных характеристик и возникновение перекосов при колебаниях окружающей температуры из-за различий тепловых расширений жидкости и газа (воздуха), используемых в качестве смазки, и как следствие изменение рабочих зазоров в воздушной и жидкостной опоре; - повышенная вибрация в осевом направлении из-за магнитного силового взаимодействия магнитной системы ротора с железом статора; - вытекание смазки из жидкостного подшипника, что приводит к загрязнению рабочих поверхностей информационных дисков, выводящему их из строя, а также к сокращению ресурса безотказной работы привода дисков; - отсутствие возможности обеспечения реверсивного вращения. Технический результат изобретения заключается в создании опорно-приводного устройства, преимущественно для высокоскоростного накопителя большой емкости, с вентильным приводом и практически неограниченным ресурсом, исключающего загрязнение подшипников посторонними частицами и, кроме того, загрязнение информационных дисков жидкой смазкой и возникновение вибрации от перекосов, работоспособного при различных положениях оси вращения и при изменениях рабочей температуры в широком диапазоне, с минимальным моментом сухого трения при запусках и остановках, работоспособного при изменении направления вращения на 180o. Технический результат достигается тем, что опорно-приводное устройство, содержащее электродвигатель со статором и ротором, газодинамическую опору с подшипниками скольжения, подвижные элементы которых образованы соответствующими участками внутренней поверхности ротора, а сопряженные с ними неподвижные элементы установлены на оси, закрепленной на основании, при этом устройство выполнено с расположенными на опоре поверхностными канавками, предназначенными для обеспечения расклинивания газом подвижных и неподвижных элементов подшипников, при этом каждая из рабочих поверхностей подвижных и неподвижных элементов подшипников является частью поверхности сферы, а каждый из двух подшипников имеет свой радиус кривизны рабочей поверхности. Достижению технического результата способствуют также частные варианты выполнения узлов устройства. Канавки для обеспечения циркуляции газа выполнены также на поверхностях, противоположных рабочим поверхностям элементов подшипников. Радиусы кривизны, углы отверстия и охвата каждого из подшипников, определяющие границы его рабочих поверхностей относительно оси вращения, а также углы наклона канавок к плоскости вращения ротора могут быть выбраны с учетом величины и направления нагрузки, действующей на подшипники при рабочей скорости, а также направления вектора скорости вращения. Для обеспечения реверсивности вращения на одной или обеих рабочих поверхностях каждого из подшипников скольжения дополнительно могут быть нанесены канавки, направляющие газовую смазку под углом к плоскости вращения ротора, отличающимся от угла наклона основных канавок. Кроме того, ротор электродвигателя может быть выполнен из двух немагнитных, установленных один внутри другого цилиндров с фланцами на торцах, внутри которых расположены чередующиеся полюса постоянных магнитов с осевой намагниченностью, охваченные с внешних сторон кольцами из магнитомягкого материала, а статор размещен в полости между фланцами цилиндров ротора и выполнен в виде несущей якорные обмотки платы из немагнитного материала. Постоянные магниты ротора могут быть выполнены дискретными или в виде сплошных колец с многополюсной намагниченностью. На фиг.1 представлено схематическое изображение в продольном осевом разрезе предложенного опорно-приводного устройства (шпиндель-мотора); на фиг.2 - частичный вид разреза, приведенного на фиг.1, изображающий размещение датчика положения ротора; на фиг.3 - вид в плане того же места, которое показано на фиг.2; на фиг.4 - вид, иллюстрирующий конфигурацию рабочей поверхности подшипника, несущей преимущественно осевую нагрузку; на фиг.5 - вид, иллюстрирующий конфигурацию рабочей поверхности подшипника, несущей преимущественно радиальную нагрузку; на фиг.6 - развертка рабочей поверхности подшипника с канавками, показанного на фиг.4, иллюстрирующая расположение и форму канавок, обеспечивающих необходимую жесткость и несущую способность этого подшипника; на фиг.7 - развертка рабочей поверхности подшипника с канавками, показанного на фиг.5, иллюстрирующая расположение и форму канавок, обеспечивающих необходимую жесткость и несущую способность этого подшипника; на фиг. 8 (а-е) - расчетные зависимости несущей способности ГДО от ее геометрических параметров; на фиг.9 - упрощенная функциональная схема электропривода в целом. Существо изобретения заключается в конструктивном и функциональном объединении элементов ГДО с криволинейными рабочими поверхностями, геометрические параметры и физические свойства которых оптимизированы для обеспечения требуемой жесткости и несущей способности в рабочем режиме, запускаемости на рабочую скорость вращения и реверсирования скорости вращения, и электродвигателя вентильного электропривода. Статор электродвигателя выполнен из немагнитных материалов для исключения магнитного силового взаимодействия между ротором и статором, что повышает эффективность и надежность работы ГДО с вогнутой или выпуклой рабочей поверхностями. Изобретение позволяет уменьшить количество сопряжений деталей, протяженность размерных цепей, уровень энерговыделения, улучшить теплоотвод от выделяющих тепло обмотки и ГДО, увеличить стабильность размеров, снизить уровень и нестабильность осевых и радиальных биений базовых поверхностей шпиндель-мотора при сохранении габаритных размеров, а также заменить жидкую смазку в подшипниках на воздушную. Предложенное опорно-приводное устройство (шпиндель-мотор) содержит торцевой электродвигатель с ротором 1 (фиг.1) из немагнитного материала (например, алюминиевого сплава), состоящим из сопряженных коаксиальных полого цилиндра 2 и втулки 3 с фланцами 4 и 5 на торцах. Втулка 3 жестко соединена с цилиндром 2, например, с помощью клея. Между фланцами 4 и 5 образован зазор 6. Статор 7 электродвигателя выполнен в виде печатной платы, вставлен в указанный зазор 6 и закреплен на основании 8 устройства. В печатной плате 7 в пределах площади А фланцев 4 и 5 размещена обмотка 9 якоря электродвигателя. На фланцах 4 и 5 установлены две пары (2 р) постоянных магнитов 10 чередующейся полюсности и кольца 11 и 12 из магнитомягкого материала, замыкающие магнитный поток со стороны, противоположной зазору 6, а также являющиеся магнитным экраном. Якорная обмотка 9 представляет собой катушки, размещенные по окружности вокруг оси вращения на определенном расстоянии друг от друга. Для улучшения теплоотвода обмотка 9 якоря залита компаундом, наполненным алюминиевой пудрой. За пределами поверхности А на печатной плате статора 7 установлены электронная схема и датчик 13 положения ротора. В качестве датчика 13 использованы магниточувствительные микросхемы 14 и 15 (фиг.2, 3). Поскольку эти микросхемы имеют размеры, не позволяющие разместить их в рабочем зазоре 6 электродвигателя, они расположены на плате 7 вне рабочего зазора, но между двумя тонкими пластинами 16 и 17, выполненными из магнитомягкого материала. Концы этих пластин вставлены в зазоры между платой 7 статора и фланцами 4 и 5. Благодаря этому часть магнитного потока основных полюсов ротора 1 (магниты 10) попадает в магнитопровод датчика 13 и пронизывает магниточувствительную микросхему. Статор 7 крепится на основании 8 с помощью винтов (не показано). Основание 8 имеет центральное отверстие, в котором жестко крепится нижний конец оси 18. На хвостовой части оси 18 жестко закреплен шип 19 с криволинейной (например, часть выпуклой поверхности сферы) рабочей поверхностью (фиг.4), воспринимающей в данном случае преимущественно осевую нагрузку. Фиксация положения шипа 19 на оси 18 осуществляется, например, с помощью клея. Конец оси 18, расположенный со стороны, противоположной основанию 8, имеет жестко закрепленный на нем шип 20, воспринимающий в данном случае преимущественно радиальную нагрузку (фиг.5). Положение шипа 20 на оси 18 фиксируется, например, с помощью клея. Находящаяся между шипами 19 и 20 втулка 3 имеет цилиндрическое отверстие, в которое свободно входит центральная часть оси 18. Криволинейные рабочие поверхности и шипов 19 и 20 сопряжены через зазоры с соответствующими поверхностями втулки 3. Эти зазоры находятся в диапазоне от 1,0 до 2,0 мкм в направлении радиуса криволинейной поверхности. Криволинейные поверхности, по крайней мере, по одной в каждом подшипнике имеют канавки глубиной от 2,0 до 5,0 мкм (фиг.6), по крайней мере, на одной из рабочих поверхностей каждого подшипника. Параметры канавок, в частности глубина h и угол наклона канавок













Формула изобретения
1. Опорно-приводное устройство, содержащее электродвигатель со статором и ротором, газодинамическую опору с подшипниками скольжения, подвижные элементы которых образованы соответствующими участками внутренней поверхности ротора, а сопряженные с ними неподвижные элементы установлены на оси, закрепленной на основании, при этом устройство выполнено с расположенными на опоре поверхностными канавками, предназначенными для расклинивания газом подвижных и неподвижных элементов подшипников, отличающееся тем, что каждая из рабочих поверхностей подвижных и неподвижных элементов подшипников является частью поверхности сферы, а каждый из двух подшипников имеет свой радиус кривизны рабочей поверхности. 2. Опорно-приводное устройство по п. 1, в котором канавки для обеспечения циркуляции газа выполнены на поверхностях, противоположных рабочим поверхностям элементов подшипников. 3. Опорно-приводное устройство по пп. 1 и 2, в котором для обеспечения реверсивности вращения на одной или обеих рабочих поверхностях подшипников скольжения дополнительно нанесены канавки, направляющие газовую смазку под углом к плоскости вращения ротора, отличающимся от угла наклона основных канавок. 4. Опорно-приводное устройство по любому из пп. 1-3, отличающееся тем, что ротор электродвигателя выполнен из двух немагнитных, установленных один внутри другого цилиндров с фланцами на торцах, внутри которых расположены чередующиеся полюса постоянных магнитов с осевой намагниченностью, охваченные с внешних сторон кольцами из магнитомягкого материала, а статор размещен в полости между фланцами цилиндров ротора и выполнен в виде несущей якорные обмотки платы из немагнитного материала. 5. Опорно-приводное устройство по п. 4, отличающееся тем, что постоянные магниты выполнены дискретными или в виде сплошных колец с многополюсной намагниченностью.РИСУНКИ
Рисунок 1, Рисунок 2, Рисунок 3, Рисунок 4, Рисунок 5, Рисунок 6, Рисунок 7, Рисунок 8, Рисунок 9, Рисунок 10, Рисунок 11