Устройство для очистки и осушки сжатого газа

 

Изобретение относится к адсорбционным способам очистки газов и разделения газовых смесей, и в частности к способам осушки и очистки сжатых газов, и может быть использовано в химической, пищевой и нефтегазовой промышленности для получения газов необходимого состава с требуемой степенью осушки и очистки. Способ осушки и очистки сжатого газа включает предварительную очистку газа в водомаслоотделителе с последующей осушкой и очисткой в одном из двух попеременно работающих адсорберов, при этом в период осушки газа в одном из адсорберов осуществляют регенерацию второго адсорбера. В качестве размещаемого в адсорберах адсорбента используют пористый электропроводный материал, при этом в период осушки газа в одном из адсорберов осуществляют поляризацию находящегося в нем адсорбента для образования на его поверхности электростатического заряда, усиливающего адсорбцию полярных молекул загрязнителей газа, а на стадии регенерации адсорбера поляризацию находящегося в нем адсорбента прекращают или меняют ее полярность. Устройство для осушки и очистки сжатого газа содержит систему трубопроводов, систему электрооборудования, блок автоматического управления, запорную электроуправляемую арматуру, водомаслоотделитель, фильтр, как минимум два попеременно работающих адсорбера, в которых для осушки и очистки газа размещен пористый электропроводящий адсорбент (углеродный материал, либо пористый металл). На стадии адсорбции с целью усиления адсорбции полярных молекул загрязнителей газа пористый токопроводящий адсорбент поляризуют посредством электродов, один из которых имеет контакт с адсорбентом, а другой, с корпусом адсорбера, при этом адсорбент изолирован относительно корпуса адсорбера, а на выходе адсорберов установлен вакуумный насос, поочередно удаляющий из адсорберов десорбированные компоненты при регенерации.

Изобретение относится к адсорбционным способам очистки газов и разделения газовых смесей, и, в частности, к способам осушки и очистки сжатых газов, и может быть использовано в химической, пищевой и нефтегазовой промышленности для получения газов необходимого состава с требуемой степенью осушки и очистки.

Известно, что в различных отраслях промышленности существуют процессы, в которых недопустимо применение некачественно очищенных и осушенных газов, что может привести к авариям и снижению качества выпускаемой продукции. В связи с этим необходимо иметь надежные способы и устройства для осуществления качественной очистки и осушки газов.

В промышленности широко применяются способы адсорбционной осушки и очистки сжатого газа, в которых для осушки и очистки газов используются силикагель, активная окись алюминия, пористые угли, природные и синтетические молекулярные сита (цеолиты). Их емкость, как правило, не превышает 30 г воды на 100г адсорбента, что требует использования для очистки и осушки достаточно большой массы адсорбента.

Известен способ глубокой комплексной очистки воздуха от двуокиси углерода и влаги, включающий адсорбцию удаляемых компонентов твердыми молекулярными ситами - цеолитами с последующей их регенерацией (восстановлением адсорбционных свойств) методом нагрева и продувки газом. (Н.В.Кельцев, Основы адсорбционной техники, 1976 г., стр.411).

Недостатком указанного способа является то, что в результате поглощения цеолитами двуокиси углерода происходит снижение их поглотительной способности по воде. Кроме того, для регенерации цеолитов требуется значительное количество энергии. Эти факторы снижают эффективность применения цеолитов для комплексной очистки и осушки воздуха.

Известны способы повышения эффективности поглощения паров воды (либо иного вещества) путем насыщения адсорбента растворами солей, усиливая, таким образом, вклад хемосорбции в процесс адсорбции.

Известен способ, включающий пропитку силикагеля водным раствором, хлористого кальция и бромистого лития, в результате чего увеличивается емкость по парам воды и прочность адсорбента (патент РФ 2274484, публ. 2006 г.).

Также известен способ осушки воздуха твердыми пористыми композиционными поглотителями влаги, представляющими собой гигроскопические неорганические вещества (смесь хлоридов лития и кальция), расположенных на пористом носителе. В качестве пористого носителя в известном способе применяется размолотый силикагель, связанный в прочные водостойкие гранулы различными минеральными связующими. В результате чего получается сорбент с высокой динамической емкостью по парам воды (патент РФ 2174870, публ. 2001 г.).

Для улучшения качества очистки и осушки газов и уменьшения габаритов устройства используют композитные сорбенты, состоящие из матрицы с открытыми порами и помещенного в эти поры гигроскопичного вещества. В качестве пористой матрицы используют неорганические оксиды, углеродные сорбенты, полимеры, природные сорбенты, пористые металлы, пористые композиты или их смеси, растворы и кристаллогидраты, а в качестве гигроскопичного вещества в поры помещают неорганические coли, их смеси, растворы и кристаллогидраты. Эти материалы позволяют существенно увеличить сорбционную емкость по воде (до 75-80 г на 100 г сухого сорбента) и понизить температуру десорбции до 50-80°С (патент РФ 2101423, публ. 1998 г.).

Недостатками известных способов являются сложность процесса производства адсорбентов и, следовательно, повышение их стоимости, низкая механическая прочность (хрупкость) в тяжелых условиях работы (значительные перепады температур, наличие капельной влаги, высокие скорости осушаемого газа). При этом, при наличии в сжатом воздухе паров масла, ввиду малых размеров пор адсорбентов для осушки газа и наличия химически активных центров на поверхности адсорбента возможно образование и концентрирование масляной пленки, практически не удаляемой в процессе десорбции.

Кроме того, поскольку процесс адсорбции в известных технических решениях происходит только за счет сил поверхностного притяжения, определяемых структурой и размером пор, либо химическими свойствами соединений, находящихся в слое сорбента, то в процессе очистки и осушки может происходить разрушение адсорбента, нарушение структуры переходных пор, «отравление» адсорбента нежелательными химическими соединениями, содержащимися в очищаемом газе.

Также достаточно сложно вести регулирование необходимой степени очистки и влиять на адсорбционные свойства адсорбента непосредственно в процессе работы, процесс адсорбции не может быть интенсифицирован, либо обращен, с этим связана и сложность организации процесса регенерации и необходимость дополнительной затраты большого количества энергии для проведения стадии десорбции.

Для регенерации цеолитов требуется, как правило, достаточно большое количество энергии (для качественной регенерации необходимо нагреть адсорбент до температуры 300-400°°). Для регенерации силикагелей и активной окиси алюминия, требуется более низкая температура регенерации (100-200°С). В обоих случаях нагрев адсорбента осуществляется либо путем нагрева наружной поверхности адсорбера (патент РФ 2106528, публ. 1999 г., патент РФ 2182513, публ. 2002 г.), либо нагревом продувочного газа (Н.В.Кельцев, Основы адсорбционной техники, 1976 г., стр.411).

Известные способы подвода теплоты к адсорбенту в процессе регенерации имеют следующие недостатки.

При нагреве наружной поверхности адсорбера возможна неравномерность прогревания адсорбента, особенно усиливающаяся к центру адсорбера, а кроме того, часть тепла, даже при условии организации качественной теплоизоляции, выбрасывается в окружающую среду.

Продувочный газ имеет достаточно низкую теплоемкость, поэтому для качественной регенерации необходимо повышать либо его расход, либо температуру, что может негативно влиять на прочность гранул адсорбента и повышает эксплуатационные расходы.

Таким образом, используемый во многих известных установках по очистке и осушке газов принцип нагрева внешним источником тепла непосредственно корпуса адсорбера, либо нагрева газа внешним источником тепла и последующее использование нагретого газа в качестве теплоносителя для проведения регенерации адсорбента, имеет достаточно низкую эффективность и приводит к повышенным энергозатратам на проведение регенерации.

Исходя из вышесказанного, можно сделать вывод, что все известные способы и методы очистки и осушки газов в стационарном слое адсорбента имеют, в общем, единый подход: применяются широко известные промышленные сорбенты, либо их комбинации, для интенсификации процесса регенерации, как правило, сорбенты, при их производстве насыщаются гидрофильными (имеющими высокую растворимость в воде) веществами, которые усиливают химическую составляющую адсорбции -хемосорбцию и увеличивают удельную емкость адсорбентов; сорбенты также пропитывают различными химическими соединениями для увеличения прочности зерен адсорбента, либо насыщают их химическими катализаторами, ускоряющими необходимые химические реакции по извлечению, либо модификации извлекаемого из газового потока компонента.

Задачей настоящего изобретения является расширение арсенала технических средств, используемых в процессе очистки и осушки газов, повышение эффективности, экономичности, надежности и увеличения срока службы существующих газоочистных установок, применяемых в различных отраслях промышленности.

Сущность предлагаемого изобретения заключается в следующем.

Способ осушки и очистки сжатого газа включает предварительную очистку газа в водомаслоотделителе с последующей осушкой и очисткой в одном из двух попеременно работающих адсорберов, при этом в период осушки газа в одном из адсорберов осуществляют регенерацию второго адсорбера. В качестве размещаемого в адсорберах адсорбента используют пористый электропроводный материал, при этом в период осушки газа в одном из адсорберов осуществляют поляризацию находящегося в нем адсорбента для образования на его поверхности электростатического заряда, усиливающего адсорбцию полярных молекул загрязнителей газа, а на стадии регенерации адсорбера поляризацию находящегося в нем адсорбента прекращают или меняют ее полярность.

На стадии регенерации адсорбера находящийся в нем адсорбент нагревают, пропуская через него постоянный или переменный электрический ток.

Устройство для осушки и очистки сжатого газа содержит систему

трубопроводов, систему электрооборудования, блок автоматического управления, запорную электроуправляемую арматуру, водомаслоотделитель, фильтр, как минимум два попеременно работающих адсорбера, в которых для осушки и очистки газа размещен пористый электропроводящий адсорбент (углеродный материал, либо пористый металл). На стадии адсорбции с целью усиления адсорбции полярных молекул загрязнителей газа пористый токопроводящий адсорбент поляризуют посредством электродов, один из которых имеет контакт с адсорбентом, а другой, с корпусом адсорбера, при этом адсорбент изолирован относительно корпуса адсорбера, а на выходе адсорберов установлен вакуумный насос, поочередно удаляющий из адсорберов десорбированные компоненты при регенерации.

На выходном трубопроводе очищенного и осушенного газа могут быть установлены подключенные к блоку автоматического управления узел измерения концентрации извлекаемых из сжатого газа компонентов или узел измерения влажности сжатого газа.

Переключение адсорберов производится блоком автоматического управления по сигналу узла измерения концентрации извлекаемых из сжатого газа компонентов, либо узла измерения влажности сжатого газа.

Адсорбент может дополнительно содержать катализатор, увеличивающий на стадии регенерации адсорбента скорость реакции окисления (разложения) поглощенных адсорбентом углеводородов с выделением тепла, которое может быть использовано для проведения регенерации адсорбента.

Предложенный способ позволяет управлять процессом адсорбции, при этом увеличивается емкость адсорбента по извлекаемым из газа компонентам, а, следовательно, увеличивается эффективность устройства, и снижаются энергозатраты на регенерацию адсорбента.

В качестве адсорбента в предлагаемом устройстве может быть

применен электропроводящий материал с сильно развитой поверхностью, углеродные молекулярные сита, углеродные волокна, углеродная ткань, пористые (губчатые) электропроводящие металлы (железо, титан, бронза, алюминий), композитные электропроводящие материалы.

Предложенный способ очистки и осушки осуществляется без применения химических соединений и катализаторов для усиления хемосорбции. Для очистки и осушки используются и усиливаются естественные электростатические эффекты, происходящие при взаимодействии молекул загрязняющих газ веществ на поверхности адсорбентов в процессе физической адсорбции, и таким образом предлагаемый способ не следует явным образом из известного уровня техники.

Действие предложенных способа и устройства основано на следующих фактах.

Все адсорбционные взаимодействия можно разбить на два основных типа: физическую адсорбцию и сорбцию, основанную на силах химического взаимодействия. Физическая адсорбция вызывается силами молекулярного взаимодействия. В большинстве случаев основной вклад в энергию взаимодействий вносят дисперсионные силы. Молекулы большинства загрязняющих веществ, поглощаемых при адсорбции, обладают флуктуирующими диполями и квадруполями, вызывающими «мгновенные» отклонения распределения электронной плотности от среднего распределения. При сближении молекул веществ загрязняющих газ с атомами или молекулами адсорбента движение флуктуирующих диполей и квадруполей приобретает систематический и строго упорядоченный характер, обусловливающий возникновение притяжения между ними. В ряде случаев дисперсионные силы усиливаются электростатическими силами.

Взаимодействие, вызываемое электростатическими силами, зависит, как правило, от химической природы поглощаемого адсорбентом загрязняющего вещества и вклад его в общую энергию взаимодействия при адсорбции полярных молекул на электронейтральных углеродных сорбентах практически равен нулю. (Н.В.Кельцев, Основы адсорбционной техники, 1976 г.,стр.27-28).

Механизм адсорбции полярных молекул воды в известных сорбентах (цеолит, силикагель) определяется взаимодействием на поверхности адсорбента с поверхностными гидроксильными группами имеющих некомпенсированный электростатический зарядом и образованием водородных связей. В случае, когда сорбенты дополнительно содержат соли или оксиды, механизм сорбции определяется в основном химическими взаимодействиями, в результате чего в порах сорбента протекают реакции хемосорбции.

Особенностью активных углей как промышленного сорбента является то, что их поверхность электронейтральна, и адсорбция на углях в основном определяется дисперсионными силами взаимодействия. (Н.В. Кельцев, Основы адсорбционной техники, 1976 г., стр.86). В случае применения для осушки газов активных углей, объем поглощенной воды практически полностью заполняет их поры, а изотермы адсорбции воды имеют S-образный характер, гистерезиса не наблюдается, и не требуется для десорбции затрачивать большое количество энергии на регенерацию (там же, стр.87-88).

Создавая на поверхности электронейтрального сорбента электростатический заряд можно значительно усиливать сорбцию полярных молекул, используя механизмы адсорбции, которые не присущи электронейтральным сорбентам, но для других сорбентов являются основным механизмом сорбции. При этом степенью поляризации сорбента можно

управлять, фактически регулируя адсорбционные силы.

Известны способы извлечения и концентрирования веществ путем адсорбции растворенного вещества в электрическом поле, причем, по крайней мере, один электрод представляет из себя электропроводящий адсорбент (патент РФ 2137757, публ. 1999 г.). Данный способ нельзя применить для осушки и очистки газов, так как извлечение и концентрирование в указанном способе осуществляется из водного раствора вещества.

Предлагаемый способ характеризуется тем, что процесс извлечения загрязняющих веществ (очистки и осушки) производится в газовой среде, пропуская загрязненный газ через поляризованный адсорбент, и скорость извлечения вредных веществ из газа выше, так как и проницаемость газов в поры адсорбента и скорость диффузии в газе больше, чем в жидкости.

Способ отличается от известных тем, что эффективность очистки и осушки газа достигается путем поляризации электропроводящего (углеродного) адсорбента, в результате на его поверхности образуется заряд. Частицы (молекулы) воды и полярные молекулы углеводородов, содержащиеся в газе, имея нескомпенсированный заряд, более интенсивно адсорбируются на поверхности адсорбента, при этом один электрод находится в контакте с адсорбентом, а другой контактирует с поверхностью адсорбера изолированно от адсорбента. Напряжение, прикладываемое к адсорберу, должно быть гораздо ниже энергии диссоциации воды на кислород и водород, но достаточное для создания на поверхности адсорбента как минимум мономолекулярного слоя адсорбированного загрязняющего газ вещества, причем последующие слои должны образовываться при помощи водородной связи (в случае воды), усиливаемой электростатической составляющей.

При насыщении адсорбента необходимо производить его регенерацию, и для непрерывности процесса осушки целесообразно применение двух попеременно работающих адсорбера, в то время как один адсорбер производит очистку и осушку газа, другой регенерируется.

Когда степень очистки и осушки ухудшается, производится переключение адсорберов, при котором один адсорбер, отработавший на осушку, включается на регенерацию. Регенерация осуществляется следующим образом. На электроды подается обратное напряжение, которое отталкивает молекулы с поверхности адсорбента. При этом происходит десорбция молекул воды и возможно их слияние за счет поляризации.

Для удаления продуктов десорбции из адсорберов, устройство дополнительно может содержать вакуумный насос, установленный на выходе адсорберов, и производящий откачку и сброс продуктов десорбции в дренаж.

Для регенерации насыщенного влагой электропроводящего сорбента может быть применен способ нагрева непосредственно адсорбента, пропуская через него постоянный или переменный ток, при этом находящиеся в порах адсорбированные вредные вещества будут удалены с большей эффективностью по сравнению с продувкой паром или наружным нагревом.

На фиг.1 представлена принципиальная схема устройства для очистки и осушки газа; на фиг.2 представлена конструкция адсорбера, используемого для осуществления предлагаемого способа очистки и осушки газа.

Устройство для осуществления предлагаемого способа состоит из установленных по ходу движения газа: водомаслоотделителя 1, фильтра 2, двух параллельно соединенных адсорберов 3, 4, подключенных с помощью изолирующих соединений через невозвратные клапаны 5 и 6 соответственно к выходному трубопроводу, а через электроуправляемые клапаны 7 и 8 соответственно к электроприводному вакуумному насосу 9, обеспечивающему сброс продуктов десорбции в дренаж.

Водомаслоотделитель 1 и фильтр 2 через электроуправляемые клапаны соответственно 10 и 11 соединены с дренажной линией, куда производится периодическая продувка. Переключение адсорберов 3 и 4 осуществляется с помощью электроприводных клапанов 12 и 13 соответственно. Для контроля за качеством выходящего газа на выходном трубопроводе установлен узел измерения концентрации извлекаемого из газового потока компонента (в частном случае узел измерения влажности) 14, для контроля и регулирования температуры адсорберов при регенерации в адсорберах 3 и 4 предусмотрены термометры 15 и 16 соответственно.

Управление устройством для осушки и очистки газа обеспечивается в соответствие с заданным алгоритмом работы посредством блока автоматического управления 17, который связан электрическими цепями с электроприводными клапанами 7, 8, 10, 11, 12, 13, вакуумным насосом 9, узлом измерения концентрации извлекаемого из газового потока компонента 14 и термометрами 15 и 16.

Адсорбер для осуществления предлагаемого способа очистки и осушки газа (см. фиг.2) включает корпус 18 с входным патрубком газа 19, выходной патрубок газа 20 и выходной патрубок жидкости (продуктов десорбции) 21. Внутри корпуса расположен электропроводящий адсорбент 22, установленный соосно относительно корпуса и электрически изолированный от корпуса 18 с помощью прокладки 23 и колец 24. Адсорбент 22 зафиксирован в крышке 25. Дополнительно обеспечен подвод от блока управления 17 электрического напряжения к электродам 26, контактирующим с адсорбентом 22 и к электроду 27, контактирующему с корпусом 18, кроме того, через электроды 26 обеспечивается подвод постоянного или переменного тока для нагрева электропроводящего адсорбента 22. Для обеспечения допустимой температуры на поверхности адсорбера выполнена теплоизоляция в виде теплоизоляционного материала 28, закрытого кожухом 29. Дополнительно в слое адсорбента размещен термометр 30 в электроизоляционном кармане 31 для контроля температуры при регенерации. Конструкция адсорбера предусматривает его работу при высоком (свыше 10 МПа) рабочем давлении.

Работает установка следующим образом.

Сжатый газ под рабочим давлением поступает в водомаслоотделитель 1, где происходит очистка газа от крупных частиц влаги, масла и механических частиц. Из водомаслоотделителя 1 газ поступает в фильтр 2, в котором происходит очистка газа от масляных паров, негативно влияющих на работу адсорбента. Отделившаяся в водомаслоотделителе 1 и фильтре 2 водомасляная эмульсия через клапаны 10 и 11 направляется при периодических продувках в дренаж. Очищенный от капельной влаги и масла газ поступает в один из адсорберов 3, 4, где происходит осушка газа до заданных кондиций. Адсорберы 3, 4 работают попеременно (один работает на осушку, а другой в это время регенерируется, при этом время регенерации гораздо меньше, чем время работы адсорбера на осушку). В процессе прохождения газа через работающий на осушку адсорбер поляризованный электропроводящий адсорбент 22 в нем насыщается полярными молекулами извлекаемого вещества, а осушенный и очищенный газ поступает в выходной трубопровод через один из невозвратных клапанов 5 или 6. После насыщения адсорбента происходит переключение адсорберов, и ранее отработавший на очистку и осушку адсорбер включается на регенерацию, в процессе которой осуществляется отключение источника тока либо смена его полярности, дополнительно может происходить нагрев адсорбента путем пропускания через него постоянного или переменного тока. После нагрева адсорбента до заданной температуры производится вакуумирование (откачка) десорбированного извлекаемого вещества и отвод десорбированных компонентов в дренаж.

После адсорбера осушенный и очищенный газ поступает в выходной трубопровод к потребителям. Если влажность газа, выдаваемого потребителям, выше установленной (контрольной) уставки, блок автоматического управления 17 по показаниям узла измерения концентрации извлекаемого компонента в газовом потоке (узла измерения влажности) 14, установленного на выходном трубопроводе, производит переключение адсорберов.

Настоящее изобретение позволяет повысить эффективность и надежность процесса очистки и осушки сжатого газа, снизить эксплуатационные расходы, а также обеспечивает управление процессами адсорбции и десорбции установок для очистки и осушки газов, и может быть использовано в химической, пищевой и нефтегазовой промышленности для получения газов необходимого состава с требуемой степенью осушки и очистки.

1. Устройство для осушки и очистки сжатого газа, содержащее систему трубопроводов, систему электрооборудования, блок автоматического управления, запорную электроуправляемую арматуру, водомаслоотделитель, фильтр, как минимум два попеременно работающих адсорбера, в которых для осушки и очистки газа размещен пористый электропроводящий адсорбент (углеродный материал, либо пористый металл), отличающееся тем, что на стадии адсорбции с целью усиления адсорбции полярных молекул загрязнителей пористый токопроводящий адсорбент поляризуют посредством электродов, один из которых имеет контакт с адсорбентом, а другой, с корпусом адсорбера, при этом адсорбент изолирован относительно корпуса адсорбера, а на выходе адсорберов установлен вакуумный насос, поочередно удаляющий из адсорберов десорбированные компоненты при регенерации.

2. Устройство по п.1, отличающееся тем, что на выходном трубопроводе очищенного и осушенного газа установлен подключенный к блоку автоматического управления узел измерения концентрации извлекаемых из сжатого газа компонентов.

3. Устройство по п.1, отличающееся тем, что переключение адсорберов производится блоком автоматического управления по сигналу узла измерения концентрации извлекаемых из сжатого газа компонентов.

4. Устройство по п.1, отличающееся тем, что на выходном трубопроводе очищенного и осушенного газа установлен подключенный к блоку автоматического управления узел измерения влажности сжатого газа.

5. Устройство по п.4, отличающееся тем, что переключение адсорберов производится блоком автоматического управления по сигналу узла измерения влажности сжатого газа.



 

Похожие патенты:

Адсорбер // 96338

Полезная модель относится к области радиоэлектроники и может быть использована в качестве маскировочного средства, предназначенного для защиты движущихся объектов от систем радиолокационного обнаружения
Наверх