Ультразвуковой расходомер

 

Предлагаемый расходомер относится к технике измерения расхода жидких и газообразных сред и может быть применен в нефтяной и газовой промышленности.

Ультразвуковой многоканальный расходомер, содержащий два блока акустических преобразователей, смещенных друг относительно друга вдоль трубопровода. Каждый блок содержит шесть преобразователей, подключенных к импульсному генератору. Акустические преобразователи неравномерно распределены по периметру поперечного сечения трубопровода и установлены относительно продольного сечения по оси трубопровода следующим образом: четыре преобразователя, установлены соответственно в верхнем уровне относительно продольного сечения трубопровода, четыре преобразователя, установлены в среднем уровне, образуя при этом перекрестные измерительные каналы, расположенные в одной плоскости. Преобразователи, установленные в нижнем уровне относительно продольного сечения, образуют два скрещенных канала, из двух преобразователей, которые расположены в разных плоскостях.

Преобразователи подключены к импульсному генератору через коммутатор, соединенный с процессором. 2 з.п.ф., 3 илл.

Предлагаемый расходомер относится к технике измерения расхода жидких и газообразных сред и может быть применен, например, в нефтяной и газовой промышленности.

Измерение расхода необходимо для мгновенных расчетов и измерений расхода текущей среды в жидком или газообразном состоянии. Данные, полученные в результате измерений, могут представлять собой мгновенное значение или мгновенный расход текущей среды, измеренный по времени.

Для измерения расхода в целом или измерения расхода газов или жидкостей в частности предложено множество технологий, применяющих ультразвуковые устройства. В большинстве таких систем применяют способ, известный как времяимпульсный метод измерения. Время прохождения сигнала, направленного по скорости потока, меньше чем время прохождения сигнала в противоположном направлении. Разница между этими временами используют для расчета средней скорости потока. Расход текущей среды определяют умножением измеренного значения средней скорости на площадь сечения трубопровода.

Известны расходомеры, осуществляющие измерение скорости потока по двум каналам, например (патент №2190191, опубл. 27.09.2001), где два канала состоят из излучателя и приемника, направленных по потоку и против потока. Каждый канал образован генератором, излучателем, приемником, усилителем и преобразователем «время-напряжение».

Данные расходомеры имеют следующие недостатки. Измерение средней скорости потока по одному или двум каналам не может гарантировать точность измерения в большом диапазоне расходов при использовании трубопроводов с большим поперечным сечением, в которых образуются завихрения

потока среды. В данном случае не учитывается максимальная скорость потока и измеренное значение скорости потока отличается от реальной скорости. Поэтому расчет расхода среды на основании этих измерений является неточным. Для повышения точности предложены ультразвуковые многоканальные системы.

Наиболее близким к предлагаемому решению является ультразвуковой многоканальный расходомер (патент №2226263, опубл. 23.03.2004), содержащий два блока акустических преобразователей, смещенных друг относительно друга вдоль трубопровода, каждый из которых содержит шесть преобразователей. Диаграмма излучения каждого преобразователя обоих блоков перекрывает по меньшей мере два преобразователя другого блока. Пары соответствующих преобразователей образуют два перекрестных измерительных канала, векторная сумма проекций которых на поперечное сечение трубопровода является нулевой. Преобразователи каждой из групп равномерно распределены по периферии поперечного сечения трубопровода.

Однако данное устройство имеет следующий недостаток. Использование преобразователей с широкой диаграммой направленности позволяет получить информацию о скорости потока в различных местах сечения трубы. Однако это создает значительные трудности в обработке сигналов, так как требует проведения очень большого количества измерений и вычислений полученных параметров. Это усложняет процесс измерения, получения конечного результата и конструкцию расходомера.

Задачей создания заявленного устройства является усовершенствование конструкции, позволяющей упростить измерение и при этом получить оптимальную точность.

Решение указанной задачи достигается за счет того, что ультразвуковой многоканальный расходомер, содержит два блока акустических преобразователей, смещенных друг относительно друга вдоль оси трубопровода. Каждый блок содержит шесть преобразователей, подключенных к импульсному

генератору. Новым в данном устройстве является то, что преобразователи неравномерно распределены по периметру поперечного сечения трубопровода и расположены относительно продольного сечения трубопровода таким образом, что две группы преобразователей, состоящие из четырех преобразователей, установлены соответственно в верхнем и среднем уровнях и образуют на этих уровнях перекрестные измерительные каналы, лежащие в одной плоскости. Преобразователи, установленные в нижнем уровне относительно продольного сечения трубопровода, образуют два скрещенных канала из двух преобразователей, лежащих в разных плоскостях. Таким образом образовано четыре плоскости, в которых происходит измерение скорости потока, что достаточно для точного измерения расхода газа в трубопроводе. Наиболее полную информацию о скорости потока необходимо получить в его верхней части относительно продольного сечения трубопровода. Это связано с тем, что в этой части трубопровода завихрение потока максимально. Для этого в заявляемом устройстве преобразователи размещены по периферии трубопровода так, чтобы обеспечить по два пересекающихся акустических канала в двух параллельных плоскостях в верхней и средней части трубопровода относительно его продольного сечения и по одному акустическому каналу в двух параллельных плоскостях в нижней части трубопровода. Увеличение числа путей не улучшает точность измерения расхода, следовательно, использование преобразователей с широкой диаграммой направленности и увеличение числа преобразователей нецелесообразно. Преобразователи подключены к импульсному генератору через коммутатор, соединенный с процессором.

Устройство поясняется чертежами, где на фиг.1 представлена конструкция расходомера; на фиг.2 представлена структурная схема подключения расходомера; на фиг.3 представлен расходомер в поперечном сечении по линии А-А и измерительные акустические каналы в четырех плоскостях относительно продольного сечения трубопровода.

Ультразвуковой многоканальный расходомер содержит (фиг.1) корпус 1 в виде отрезка трубопровода, представляющий собой измерительную катушку с фланцами 2 на концах. На корпусе под углом к его поверхности установлены преобразователи, представляющие собой ультразвуковые пьезоэлектрические датчики. Преобразователи разделены на два блока 3, 4 и установлены заподлицо с внутренней поверхностью корпуса 1 для обеспечения беспрепятственного течения газа. Такая установка датчиков исключает их забивание распространяющимися с потоком газа частицами. Расходомер содержит 12 преобразователей (фиг.2) по шесть преобразователей в каждом блоке: один блок состоит из преобразователей 3/1-3/6, второй блок - из преобразователей 4/1-4/6. Блоки преобразователей смещены относительно друг друга вдоль корпуса 1 расходомера по направлению течения потока контролируемой среды. Датчики каждого блока неравномерно распределены по периметру поперечного сечения трубопровода. На фиг.1 представлены три датчика каждого блока, расположенные на одной стороне корпуса 1. Расположение датчиков можно отобразить относительно плоскости его продольного сечения по оси потока контролируемой среды. Датчики расположены следующим образом. Четыре датчика 3/1, 3/2 - одного блока и 4/1, 4/2 - второго блока расположены на одном уровне выше плоскости продольного сечения трубопровода (верхний уровень). Четыре датчика 3/3, 3/4 - одного блока и 4/3, 4/4 - второго блока расположены на уровне плоскости сечения трубопровода (средний уровень). Четыре датчика 3/5 и 3/6 - одного блока и 4/5, 4/6 - второго блока расположены ниже плоскости сечения трубопровода на разном расстоянии от этой плоскости (нижний уровень). При этом датчики 3/5-4/5 расположены в одной плоскости, а датчики 3/6-4/6 в другой плоскости относительно плоскости сечения трубопровода. Таким образом датчики образуют четыре плоскости (фиг.3) для измерения времени прохождения сигнала (измерительные каналы). При этом в верхнем и среднем уровнях две пары датчиков образуют перекрестные измерительные каналы 5, 6, лежащие в одной

плоскости. Четыре датчика нижнего уровня образуют два скрещенных измерительных канала 7, 8, которые лежат в разных плоскостях. Два блока преобразователей 3, 4 подключены (фиг.2) через коммутатор 9 к выходу импульсного генератора 10. К управляющему входу генератора 10 подключен процессор 11, соединенный с выходом усилителя 12 и коммутатором 9. Вход усилителя 12 подключен к коммутатору 9.

Устройство работает следующим образом.

Работа расходомера основана на принципе измерения времени прохождения акустического сигнала по ходу и против хода потока контролируемой среды. Время прохождения ультразвукового сигнала, направленного по ходу потока, меньше чем время прохождения этого сигнала в противоположном направлении. Разница между этими временами используют для подсчета скорости потока и определения по скорости расхода газа, прошедшего по трубопроводу. Ультразвуковой сигнал направляют под некоторым углом к стенке трубопровода. Время прохождения акустического сигнала против потока и по ходу потока соответственно между двумя акустическими датчиками определяют из следующих соотношений:

где Tu и Т d - время прохождения акустического сигнала против потока и по ходу потока соответственно, с - скорость звука в газе, - скорость потока контролируемой среды, - угол, образуемый ультразвуковым сигналом со стенкой трубопровода, L - расстояние между излучающими поверхностями ультразвуковых датчиков.

Из этих уравнений можно определить скорость потока газа и скорость звука:

Таким образом, зная время прохождения сигналов и расстояние между

ультразвуковыми датчиками, можно рассчитать скорость потока и количество контролируемой среды, прошедшего по трубопроводу, равное скорости, умноженной на поперечное сечение трубопровода.

В предлагаемой конструкции многоканального расходомера измеряют время прохождения ультразвукового сигнала на четырех разных уровнях 5-8 (фиг.3) газового потока в трубопроводе. Проводят постоянное измерение времени прохождения сигнала в каждой паре датчиков: 3/1-4/1, 3/2-4/2, 3/3-4/3, 3/4-4/4, 3/5-4/5, 3/6-4/6 (фиг.2), затем определяют среднюю скорость потока. Для этого подают высокочастотное напряжение с выхода импульсного генератора 10 на вход коммутатора 9. Длительность импульсов много меньше времени прохождения сигнала через среду. С импульсного генератора 10 подают сигнал стробирования на процессор 11. В зависимости от управляющих сигналов процессора коммутатор 9 подает импульсный сигнал от генератора 10 на один из преобразователей одного блока, например 3/1. Преобразователь 3/1 работает в режиме излучателя и преобразует электрический сигнал в акустический. Одновременно коммутатором 9 подключают соответствующий преобразователь 4/1 другого блока, который работает в режиме приемника. Каждый датчик в канале может работать как в качестве излучателя сигнала, так и в качестве приемника. Такой режим задают настройкой процессора 11, подключенного к коммутатору 9. Каждая пара датчиков, например 3/1-4/1, создает один акустический канал. Таким образом работает шесть акустических каналов. Коммутатор 9 переключает каждый датчик в акустическом канале с режима излучателя в режим приемника. Процессор 11 рассчитывает время прохождения сигнала по потоку Td и против потока Тu соответствующей пары преобразователей в шести акустических каналах. Затем определяют среднее время прохождения акустического сигнала Тср всех каналов. Измерение проводят в четырех параллельных плоскостях: первую плоскость 5 (фиг.3) образуют четыре датчика верхнего уровня, вторую плоскость 6 образуют четыре датчика среднего уровня, третью 7 и четвертую 8

плоскости измерения образуют четыре (по два датчика) нижнего уровня. Измерение в четырех плоскостях проводят для оптимизации точности измерения и обеспечения независимости измерений от параметров газовой среды. Использование четырех плоскостей измерения и предлагаемое расположение датчиков на трубопроводе подобрано экспериментальным путем с помощью компьютерного моделирования различных скоростных режимов и является оптимальным решением для измерения скорости асимметричного потока. Увеличение количества каналов измерения скорости потока и количества датчиков не улучшает точность измерения, усложняет процесс измерения и конструкцию расходомера. При меньшем количестве каналов измерения точность расходомера ухудшается.

1. Ультразвуковой многоканальный расходомер, содержащий два блока акустических преобразователей, смещенных относительно друг друга вдоль трубопровода, каждый из которых содержит шесть преобразователей, подключенных к импульсному генератору, отличающийся тем, что акустические преобразователи неравномерно распределены по периметру поперечного сечения трубопровода и установлены относительно продольного сечения по оси трубопровода таким образом, что две группы, состоящие из четырех преобразователей, установлены соответственно в верхнем и среднем уровнях и образуют перекрестные измерительные каналы, расположенные в одной плоскости, а преобразователи, установленные в нижнем уровне относительно продольного сечения, образуют два скрещенных канала, из двух преобразователей, которые расположены в разных плоскостях.

2. Ультразвуковой многоканальный расходомер по п.1, отличающийся тем, что преобразователи подключены к импульсному генератору через коммутатор, соединенный с процессором.



 

Похожие патенты:

Изобретение относится к области приборостроения и может быть использовано для измерения расхода и скорости газа при помощи ультразвуковых волн

Изобретение относится к измерительной технике, в частности, к устройству узла учета тепловой энергии и количества теплоносителя для водяных систем теплоснабжения

Изобретение относится к области электротехники, а именно к силовой коммутационной аппаратуре, и предназначено для управляемой коммутации конденсаторных батарей

Блок подготовки топливного, пускового и импульсного газа с сепаратором относится к средствам подготовки топливного, пускового и импульсного газа и предназначена для использования на объектах газотранспортных предприятий в составе газовых компрессорных станций магистральных газопроводов.

Полезная модель платёжного терминала относится к системам оплаты услуг, посредством самообслуживания, а именно к платежным терминалам оплаты, предназначенным для оплаты различных услуг и имеющим возможность считывания двухмерного штрих-кода с различных носителей информации, в частности, лотерейных билетов, этикеток товаров, квитанций для оплаты коммунальных услуг или налогов, или государственных пошлин, или штрафов.
Наверх