Производственный комплекс технологического оборудования для переработки и утилизации отходов титано-магниевого производства

 

Предлагаемая полезная модель относится к области металлургии, и в частности к применяемому в цветной металлургии технологическому оборудованию для комплексной переработки, обезвреживания и дезактивации сложных по составу многокомпонентных полиметаллических отходов производства. Разработанное техническое решение конкретно может быть использовано в титано-магниевом производстве для обезвреживания хлоридных расплавов, образующихся на различных стадиях, участках и отделениях по получению металлического титана - титановой губки - путем магниетермической обработки тетрахлорида титана и при электролитическом получении металлического магния из карналлитового сырья и хлорида магния. Задачей предлагаемой полезной модели является создание нового «Производственного комплекса», обеспечивающего утилизацию практически всех солевых отходов, в том числе вторичных отходов производства, образующихся при получении металлического титана (титановой губки) и металлического магния. Технический результат, который может быть получен при реализации предлагаемой полезной модели, заключается в дополнительном выпуске - на основе утилизации отходов - карналлитового сырья, используемого непосредственно в общей технологической цепочке получения титана и магния. Поставленная задача решается с достижением вышеуказанного технического результата предлагаемой полезной моделью - «Производственным комплексом технологического оборудования для переработки и утилизации отходов титано-магниевого производства», включающим ванну гидроудаления, соединенную с гидроотстойником, бак-сборник исходных хлоридных растворов и пульп, соединенный через насос с

ванной гидроудаления и реактором-осадителем, бак-сборник ванадийсодержащих сточных вод, соединенный с баком-сборником исходных хлоридных растворов и пульп, баки-дозаторы высокомолекулярного флокулянта, раствора хлорида бария, сульфатсодержащего неорганического реагента и магнезиального молока, соединенные через сливные патрубки с реактором-осадителем, фильтр-пресс - I, соединенный с реактором-осадителем, шнековый смеситель, соединенный с фильтр-прессом - I, бункером пыли от руднотермической плавки титансодержащих концентратов и патрубком разгрузочного устройства гидроотстойника, шнековый смеситель, соединенный с бункером исходных магнийсодержащих оксидных материалов, баком-дозатором раствора и/или пульпы хлорида магния и с блоком формования, термообработки и прессования композиционной смеси. Новым в предлагаемой полезной модели является то, что выход маточного раствора с фильтр-пресса - I направлен в сборно-расходную емкость очищенных от посторонних примесей хлоридных растворов, для обеспечения переработки солевых отходов магниевого производства установлена система выщелачивания, состоящая из реакторов с мешалками для растворения шлама карналлитовых хлораторов отработанного электролита магниевых электролизеров и части расплава хлорида магния, выводимого из технологической цепочки отделения магниетермического получения титановой губки, патрубки нижнего слива реакторов для выщелачивания имеют соединения с усреднительным баком с мешалкой, выход из которого направлен в реактор для очистки объединенных хлоридных растворов от примесей, на крышке реактора имеются входные патрубки, один из которых соединен с дозатором щелочного реагента, а другой соединен с дозатором и баком для приготовления рабочего раствора осадителя - раствора сульфида и/или гидросульфида натрия или аммония, патрубок нижнего слива пульпы из реактора имеет соединение с фильтр-прессом - II, выход очищенного от примесей хлоридного раствора с фильтр-пресса - II направлен в сборно-расходную

емкость, соединенную с распылительной сушилкой, а выход осадка с корыта фильтр-пресса - II направлен через дозатор во второй шнековый смеситель.

Предлагаемая полезная модель относится к области металлургии, и в частности к применяемому в цветной металлургии технологическому оборудованию для комплексной переработки, обезвреживания и дезактивации сложных по составу многокомпонентных полиметаллических отходов производства. Разработанное техническое решение конкретно может быть использовано в титано-магниевом производстве для обезвреживания хлоридных расплавов, образующихся на различных стадиях, участках и отделениях по получению металлического титана - титановой губки - путем магниетермической обработки тетрахлорида титана и при электролитическом получении металлического магния из карналлитового сырья и хлорида магния.

Известна «Аппаратурно-технологическая линия для обезвреживания и дезактивации полиметаллических отходов производства» (Свидетельство на ПМ №29721 по заявке №2002132135 с приор. от 04.12.2002; Зарег. и опубл. 27.05.2003. Бюл. №15. МПК С22В 9/02), включающая в себя следующее основное технологическое оборудование: ванну гидроудаления, соединенную с гидроотстойником, бак-сборник исходных хлоридных растворов и пульп, непосредственно соединенный через насос с ванной гидроудаления и реактором-осадителем, бак-сборник ванадийсодержащих сточных вод, соединенный с баком-сборником исходных хлоридных растворов и пульп, баки-дозаторы известкового молока, раствора хлорида бария, сульфатсодержащего неорганического реагента и высокомолекулярного флокулянта, соединенные через сливные патрубки и реактором-осадителем, фильтр-пресс, соединенный с реактором-

осадителем, шнековый смеситель, соединенный с выгружным сборником фильтр-пресса, бункером пыли от руднотермической плавки и патрубком разгрузочного устройства гидроотстойника, шнековый смеситель, соединенный с бункером-дозатором гипсовых вяжущих материалов, причем выход из шнекового смесителя соединен с блоком формования композиционной смеси.

Известная полезная модель обеспечивает обезвреживание отходов титанового производства от токсичных и радиоактивных металлов, однако в составе известной «Технологической линии» отсутствует оборудование для переработки и утилизации растворов - фильтратов, образующихся при переработке расплавов титановых хлораторов, и отсутствует оборудование для переработки и утилизации различных расплавов магниевого производства.

Из известных аналогов наиболее близким по технической сущности и достигаемому результату к предлагаемому техническому решению является известная «Технологическая линия для переработки металлургических отходов» (Свидетельство РФ на ПМ №29530 по заявке №20002132141 с приор. от 04.12.2002. Зарег. и опубл. 20.05.2003. Бюл. №14. МПК8 С22В 60/00) - принята за прототип.

Техническое решение по прототипу включает в себя (см. рис.1) ванну гидроудаления (1), соединенную с гидроотстойником (2), бак-сборник исходных хлоридных растворов и пульп (3), непосредственно соединенный через насос (4) с ванной гидроудаления (1) и реактором-осадителем (6), бак-сборник ванадийсодержащих сточных вод (5), соединенный с баком-сборником исходных хлоридных растворов и пульп (3), баки-дозаторы высокомолекулярного флокулянта (7), раствора хлорида бария (8), сульфатсодержащего неорганического реагента (9) и магнезиального молока (10), соединенные через сливные патрубки и реактором-осадителем (6), фильтр-пресс (11), соединенный с реактором-осадителем (6), шнековый смеситель (12), соединенный с выгружным сборником фильтр-пресса (11),

бункером пыли от руднотермической плавки титансодержащих концентратов (13) и патрубком разгрузочного устройства гидроотстойника (2), шнековый смеситель (14), соединенный с бункером исходных магнийсодержащих оксидных материалов (15), баком-дозатором раствора и/или пульпы хлорида магния (16) с блоком формования, термообработки и прессования композиционной смеси (17).

Реализация полезной модели по прототипу обеспечивает локализацию высокотоксичных металлов (торий, радий, хром, ванадий, марганец и др.) и перевод их в радиационно-безопасную форму - непылящее водонерастворимое отвержденное состояние, пригодное для дальнейшего складирования без нанесения экологического ущерба окружающей среде.

Недостатком «Технологической линии» по прототипу является отсутствие в ее составе оборудования для утилизации растворов, получаемых после обезвреживания отходов титанового производства, и отсутствие оборудования для переработки и утилизации солевых отходов магниевого производства - шламов карналлитовых хлораторов, отработанного электролита процесса электролитического получения металлического магния из карналлитового сырья и расплавов хлорида магния процесса магниетермического получения губчатого титана.

Задачей предлагаемой полезной модели является создание нового «Производственного комплекса», обеспечивающего утилизацию практически всех солевых отходов, в том числе вторичных отходов производства, образующихся при получении металлического титана (титановой губки) и металлического магния.

Технический результат, который может быть получен при реализации предлагаемой полезной модели, заключается в дополнительном выпуске - на основе утилизации отходов - карналлитового сырья, используемого непосредственно в общей технологической цепочке получения титана и магния.

Поставленная задача решается с достижением вышеуказанного технического результата предлагаемой полезной моделью -«Производственным комплексом технологического оборудования для переработки и утилизации отходов титано-магниевого производства», включающим (рис.2) ванну гидроудаления (1), соединенную с гидроотстойником (2), бак-сборник исходных хлоридных растворов и пульп (3), соединенный через насос (4) с ванной гидроудаления (1) и реактором-осадителем (6), бак-сборник ванадийсодержащих сточных вод (5), соединенный с баком-сборником исходных хлоридных растворов и пульп (3), баки-дозаторы высокомолекулярного флокулянта (7), раствора хлорида бария (8), сульфатсодержащего неорганического реагента (9) и магнезиального молока (10), соединенные через сливные патрубки с реактором-осадителем (6), фильтр-пресс - I (11), соединенный с реактором-осадителем (6), шнековый смеситель (12), соединенный с фильтр-прессом - I (11), бункером пыли от руднотермической плавки титансодержащих концентратов (13) и патрубком разгрузочного устройства гидроотстойника (2), шнековый смеситель (14), соединенный с бункером исходных магнийсодержащих оксидных материалов (15), баком-дозатором раствора и/или пульпы хлорида магния (16) и с блоком формования, термообработки и прессования композиционной смеси (17).

Новым в предлагаемой полезной модели является то, что выход маточного раствора с фильтр-пресса - I(11) направлен в сборно-расходную емкость (18) очищенных от посторонних примесей хлоридных растворов, для обеспечения переработки солевых отходов магниевого производства установлена система выщелачивания (19), состоящая из реакторов (20, 21, 22) с мешалками для растворения шлама карналлитовых хлораторов (20) отработанного электролита магниевых электролизеров (21) и части расплава хлорида магния (22), выводимого из технологической цепочки отделения магниетермического получения титановой губки, патрубки нижнего слива реакторов для выщелачивания имеют соединения с усреднительным баком

(23) с мешалкой, выход из которого направлен в реактор (24) для очистки объединенных хлоридных растворов от примесей, на крышке реактора имеются входные патрубки, один из которых соединен с дозатором щелочного реагента (25), а другой соединен с дозатором (26) и баком (27) для приготовления рабочего раствора осадителя-раствора сульфида и/или гидросульфида натрия или аммония, патрубок нижнего слива пульпы из реактора имеет соединение с фильтр-прессом - II (28), выход очищенного от примесей хлоридного раствора с фильтр-пресса - II направлен в сборно-расходную емкость (18), соединенную с распылительной сушилкой (29), а выход осадка с корыта фильтр-пресса - II (28) направлен через дозатор (30) во второй шнековый смеситель (14).

Реализация предлагаемой полезной модели

«Производственный комплекс технологического оборудования для переработки и утилизации отходов титано-магниевого производства» (рис.2) работает и эксплуатируется следующим образом.

Отработанный расплав хлораторов поступает в ванну гидроудаления (1), куда одновременно подают воду и/или циркулирующий раствор (пульпу). Образующаяся пульпа самотеком сливается в гидроотстойник (2), где оседает крупная фракция нерастворимого остатка, направляемого в шнековый смеситель (12). Осветленная пульпа из гидроотстойника (2) насосом (4) закачивается в бак-сборник исходных хлоридных растворов (3), куда одновременно из бака-сборника (5) подают ванадийсодержащие сточные воды-промводы и маточные растворы метаванадата аммония. Часть пульпы из бака-сборника (3) насосом (4) закачивается в ванну гидроудаления (1), остальная часть поступает в реактор-осадитель (6), куда для нейтрализации, дезактивации и осаждения высокотоксичных и радиоактивных металлов из баков-сборников (7, 8, 9, 10) подают высокомолекулярный флокулянт (например, полиакриламид), раствор

хлорида бария, сульфатсодержащий неорганический реагент (серная кислота или сульфат натрия) и магнезиальное молоко. Для перемешивания пульпы и окисления кислородом воздуха соединений двухвалентного железа до Fe (III) в реактор-осадитель (6) и в ванну гидроудаления (1) подают сжатый воздух. Пульпу из реактора-осадителя (6) направляют на фильтр-пресс - I (11), где предусмотрена промывка осадка водой от растворимых примесей (хлориды калия, натрия и магния). Очищенные от токсичных металлов и радиоактивных веществ растворы (фильтрат) с фильтр-пресса - I (11) направляют в сборно-расходную емкость (18), в которую также поступают очищенные от примесей посторонних металлов и взвешенных веществ (после фильтр-пресса - II) растворы от переработки солевых отходов магниевого производства. Влажный осадок, содержащий радиоактивные металлы, собирают в «корыто» фильтр-пресса - I (11), откуда его направляют в шнековый смеситель (12), куда одновременно из бункера (13) подают пыль от руднотермической плавки, а из разгрузочного устройства гидроотстойника (2) - песочную фракцию нерастворимого остатка. Полученную смесь направляют в шнековый смеситель (14), куда из бункера-дозатора (15) подают исходные магнийсодержащие оксидные материалы - серпентинит, и/или брусит, и/или магнезит, а из бака-дозатора (16) подают раствор и/или пульпу хлорида магния, например, сгущенную магнезиальную пульпу, образующуюся при очистке отходящих газов от Сl 2 и/или НСl магнезиальной суспензией, а из бункера (29) поступает осадок, получаемый при переработке солевых отходов магниевого производства. Полученную композиционную смесь затем подают в блок формования, термообработки и прессования (17). Для обеспечения утилизации солевых отходов магниевого производства их подают на установленную в составе «Производственного комплекса» систему выщелачивания (19), состоящую из реакторов с мешалками для растворения шламов карналлитовых хлораторов (20), отработанного электролита магниевых электролизеров (21) и части расплава хлорида магния (22), образующегося при магниетермическом получении титановой губки и

подлежащего «выводу» из технологического цикла, в связи с накоплением в расплаве MgCl2 примесей тяжелых металлов. После растворения солевых отходов магниевого производства, образующиеся хлоридные растворы из реакторов (20, 21, 22) через патрубки нижнего слива направляют в усреднительный бак (23) с мешалкой, откуда объединенный хлоридный раствор (пульпу) закачивают в реактор (24) для очистки раствора (MgCl 2+KCl) от примесей посторонних металлов. Для этого в реактор (24) через входные патрубки на крышке реактора подают раствор щелочи из дозатора (25) и раствор реагента - осадителя - раствора сульфида и/или гидросульфида натрия или аммония - из дозатора (26) и бака (27) для приготовления рабочего раствора NaHS и/или Na2S, и/или (NH4) 2S и др. Пульпу в реакторе (24) перемешивают и подают на фильтр-пресс - II (28), осадок отделяют от маточного раствора и направляют в дозатор (29), из которого этот осадок поступает в шнековый смеситель (14), в котором происходит смешение различных вторичных отходов титано-магниевого производства с магнезиальными вяжущими материалами с последующим отверждением композиционной смеси и переводом всех отходов производства в нетоксичную форму.

Очищенные от примесей посторонних металлов и взвешенных веществ растворы хлоридов магния и калия направляют в сборно-расходную емкость (18), откуда объединенный и усредненный раствор направляют в распылительную сушилку, в которой происходит удаление избытка влаги и обезвоживание образующегося синтетического карналлита, который собирают в сборнике-бункере (29) и затем отгружают либо на вторую стадию обезвоживания карналлита - в отделение карналлитовых хлораторов (31), либо непосредственно в отделение электролиза (32).

В результате осуществления совокупности вышеуказанных операций отходы титанового производства, содержащие токсичные металлы и радиоактивные вещества, превращаются в отвержденное состояние, т.е. в форму удобную для длительного радиационно-безопасного складирования -

в непылящее водонерастворимое состояние, устойчивое к воздействию атмосферных осадков, фунтовых и почвенных вод, не наносящее экологического ущерба окружающей среде и не оказывающего вредного влияния на здоровье населения и обслуживающего персонала. Кроме того, маточные растворы, образующиеся после выделения осадков, содержащих токсичные и радиоактивные металлы, солевые отходы магниевого производства - шламы карналлитовых хлораторов, отработанные электролиты магниевых электролизеров и расплава хлорида магния, получаемые в процессе магниетермического получения губчатого титана, перерабатывают согласно предложенному техническому решению с получением синтетического карналлита, используемого непосредственно в общем технологическом процессе производства титана и магния.

Производственный комплекс технологического оборудования для переработки и утилизации отходов титано-магниевого производства, включающий ванну гидроудаления отработанного расплава титановых хлораторов, гидроотстойник, бак-сборник для получения исходного концентрированного раствора, фильтр-пресс - I, бак-сборник ванадийсодержащих сточных вод, соединенный с баком-сборником исходных хлоридных растворов, реактор для осаждения суммы оксигидратов металлов, верхние патрубки которого соединены с баками-дозаторами высокомолекулярного флокулянта, раствора хлорида бария, сульфатсодержащего неорганического реагента и магнезиального молока, а сливной патрубок образует соединение с фильтр-прессом - I, вывод из «корыта» фильтр-пресса - I направлен в шнековый смеситель, вход которого соединен с бункером пыли от руднотермической плавки титансодержащих концентратов и патрубком разгрузочного устройства гидроотстойника, а выход направлен во второй шнековый смеситель, соединенный с бункером исходных магнийсодержащих оксидных материалов, баком-дозатором раствора и/или пульпы хлорида магния и с блоком формования, термообработки и прессования композиционной смеси, отличающийся тем, что выход маточного раствора с фильтр-пресса - I направлен в сборно-расходную емкость очищенных от посторонних примесей хлоридных растворов, для обеспечения переработки солевых отходов магниевого производства установлена система выщелачивания, состоящая из реакторов с мешалками для растворения шламов карналлитовых хлораторов, отработанного электролита магниевых электролизеров и части расплава хлорида магния, выводимого из технологического цикла отделения магниетермического получения титановой губки, патрубки нижнего слива реакторов для выщелачивания имеют соединение с усреднительным баком с мешалкой, выход из которого направлен в реактор для очистки объединенных хлоридных растворов от примесей, на крышке реактора имеются входные патрубки, один из которых соединен с дозатором щелочного реагента, а другой соединен с дозатором и баком для приготовления рабочего раствора сульфида и/или гидросульфида натрия или аммония, патрубок нижнего слива пульпы из реактора имеет соединение с фильтр-прессом - II, выход очищенного от примесей хлоридного раствора с фильтр-пресса - II направлен в сборно-расходную емкость, соединенную с распылительной сушилкой, а выход осадка с корыта фильтр-пресса - II направлен через дозатор во второй шнековый смеситель.



 

Похожие патенты:

Описаный в полезной модели способ утилизации отходов производства относится к оборудованию для эфиромасличной промышленности и может быть использована для переработки растительного сырья с целью получения фосфолипидов для разных отраслей промышленности. Технический результат полезной модели состоит в возможности получать продукт более высокого качества (без остаточных растворителей) и более низкой себестоимости.

Полезная модель относится к области сельского хозяйства и может быть использована для перевозки молока с летних лагерей и пастбищ

Изобретение относится к химическим источникам постоянного электрического тока и может быть использовано там, где в настоящее время используются гальванические элементы или аккумуляторы
Наверх