Аппаратурно-технологический комплекс по производству титана и магния

 

Предлагаемая полезная модель относится к области цветной металлургии и может быть использована на титано-магниевых комбинатах для производства металлического титана из ильменитового и/или ильмено-рутилового сырья и металлического магния из карналлитового сырья. Задачей предлагаемой полезной модели является разработка нового аппаратурно-технологического комплекса, включающего все необходимое оборудование не только для производства титана и магния, но и для утилизации вышеперечисленных отходов хлоридных расплавов. Технический результат, который может быть получен при реализации разработанной полезной модели, заключается в предотвращении безвозвратных потерь магния и хлора с отходами производства и обеспечении дополнительного выпуска - на основе переработки хлоридных отходов производства - синтетического карналлитового сырья, пригодного для последующей переработки на существующем технологическом оборудовании с получением дополнительного количества металлического магния, используемого непосредственно в аппаратурно-технологическом комплексе для магниетермического производства титана и дополнительного выпуска анодного хлора, используемого для хлорирования титановых шлаков. Поставленная задача решается при реализации предлагаемого аппаратурно-технологического комплекса по производству титана и магния, включающего в своем составе следующее основное производственное оборудование:

- руднотермическую печь для восстановительной плавки титансодержащего минерального сырья с получением обогащенных по диоксиду титана шлаков;

- солевой хлоратор для хлорирования титановых шлаков в расплаве хлоридов металлов анодным хлором магниевых электролизеров, с получением технического тетрахлорида титана;

- систему очистки технического тетрахлорида титана от примесей;

- передел магниетермического получения металлического титана, снабженный сборниками образующегося расплава хлорида магния;

- участок обезвоживания исходного карналлитового сырья, содержащий печь кипящего слоя, карналлитовый хлоратор и сборный миксер для хлоридных шламов;

- отделение-1 электролиза для получения металлического магния, реализуемого как товарный продукт и используемого для магниетермического производства титана и для получения анодного хлора, направляемого в солевой хлоратор для хлорирования титановых шлаков, емкости для сбора отработанного электролита магниевых электролизеров;

- отделение-2 электролиза расплава хлорида магния с получением оборотного металлического магния, возвращаемого на передел магниетермического получение титана и получения анодного хлора, используемого для хлорирования титановых шлаков. Новым в предлагаемой полезной модели является то, что:

- солевой хлоратор оборудован ванной гидроудаления отработанного расплава, имеющий соединение с циркуляционным баком;

- патрубок нижнего слива образующейся в процессе циркуляции и концентрирования хлоридного раствора из циркуляционного бака имеет соединение со сборной емкостью;

- выход из сборной емкости направлен в обогреваемый реактор с мешалкой для осаждения суммы оксигидратов металлов;

- реактор для осаждения соединен с дозировочной емкостью с магнийсодержащими щелочными реагентами;

- передел магниетермического получения титана, участок обезвоживания карналлита и отделение-1 электролиза оборудованы снабженными перемешивающими устройствами емкостями для

гидроразмыва хлоридных расплавов, соединенными с циркуляционными баками для гидроразмыва соответственно части расплава хлорида магния, шламов карналлитовых хлораторов и отработанного электролита;

- патрубки нижнего слива циркуляционных баков соединены с обогреваемым реактором с мешалкой для очистки хлоридных растворов от примесей;

- на крышке реактора имеются патрубки, один из которых подсоединен к баку-дозатору раствора гидроксида натрия и/или калия, а другой патрубок имеет соединение с дозатором растворов сульфида и/или гидросульфида и/или полисульфида натрия;

- патрубок нижнего слива суспензии из реактора направлен на фильтр-пресс II, выход из которого очищенных от примесей растворов хлоридов магния и калия направлен в сборную емкость, имеющей соединение с установкой для выпаривания, кристаллизатором и печью кипящего слоя.

Предлагаемая полезная модель относится к области цветной металлургии и может быть использована на титано-магниевых комбинатах для производства металлического титана из ильменитового и/или ильмено-рутилового сырья и металлического магния из карналлитового сырья.

Известен (см. например: Гармата В.А., Петрунько А.Н., Галицкий Н.В., Олесов Ю.Г. Сандлер Р.А. Титан. Свойства, сырьевая база титана, физико-химические основы и способы получения. М.: Металлургия, 1988. - 559 с.; Лебедев О.А. Производство магния электролизом. - М.: Металлургия, 1988. - 288 с.) аппаратурно-технологический комплекс по производству титана и магния из минерального сырья, состоящий из функционально-взаимосвязанных между собой производств титана и магния, включающий руднотермическую печь, солевой хлоратор, отделение очистки тетрахлорида титана, передел обезвоживания карналлитового сырья и отделение электролиза магния-1, передел магниетермического получения титана, отделение электролиза-2 получения металлического магния и анодного хлора из расплава хлорида магния, образующегося на переделе магниетермического получения титана.

Недостатком известного технического решения является отсутствие в составе «Комплекса» технологического оборудования для переработки хлоридных отходов производства - хлоридных расплавов КСl, MgCl2 и др.

Из известных аналогов наиболее близким по технической сущности и достигаемому результату являются известный (Набойченко С.А., Агеев Н.Г., Дорошкевич А.Л. и др. Процессы и аппараты цветной металлургии. Екатеринбург: УГТУ, 1997. - 648 с.) аппаратурно-технологический комплекс по производству титана и магния - принять за ПРОТОТИП.

Аппаратурно-технологический комплекс по прототипу включает в себя следующее производственное оборудование:

- руднотермическую печь для восстановительной электроплавки титансодержащего сырья с получением обогащенных по диоксиду титана шлаков;

- солевые хлораторы для хлорирования титановых шлаков в расплаве хлоридов металлов анодным хлором магниевых электролизеров с получением технического тетрахлорида титана;

- систему очистки технического тетрахлорида титана от примесей;

- передел магниетермического получения металлического титана, снабженный сборниками образующегося расплава хлорида магния;

- участок обезвоживания исходного карналлитового сырья, содержащий печи кипящего слоя, карналлитовые хлораторы и сборные миксеры для хлоридных шламов;

- отделение-1 электролиза для электролитического получения металлического магния, частично используемого для магниетермического получения титана, и анодного хлора, направляемого в солевой хлоратор для хлорирования титансодержащих шлаков;

- емкости для сбора отработанного электролита магниевых электролизеров;

- отделение-2 электролиза расплава хлорида магния с получением оборотного металлического магния, возвращаемого на передел магниетермического получения титана и анодного хлора, используемого для хлорирования титановых шлаков.

Аппаратурно-технологический комплекс по прототипу обеспечивает весьма эффективное производство металлического магния и губчатого титана, характеризующихся высоким качеством и по всем своим химическим свойствам и физико-химическим характеристикам удовлетворяющих действующие требования к материалам авиакосмического назначения.

Недостатком аппаратурно-технологического комплекса по прототипу является то, что в его составе не предусмотрено какого-либо оборудования

для подготовки и утилизации хлоридных расплавов, образующихся на различных стадиях, участках, переделах и отделениях общей технологической схемы производства титана и магния, в частности в составе «Комплекса» по прототипу отсутствует необходимое оборудование для переработки и утилизации отработанного хлоридного расплава солевых титановых хлораторов, оборудование для переработки хлоридных и хлоридно-оксидных шламов карналлитовых хлораторов, отработанного электролита отделения-1 электролиза, работающего на карналлитовом сырье и т.д.

Задачей предлагаемой полезной модели является разработка нового аппаратурно-технологического комплекса, включающего все необходимое оборудование не только для производства титана и магния, но и для утилизации вышеперечисленных отходов хлоридных расплавов.

Технический результат, который может быть получен при реализации разработанной полезной модели, заключается в предотвращении безвозвратных потерь магния и хлора с отходами производства и обеспечении дополнительного выпуска - на основе переработки хлоридных отходов производства - синтетического карналлитового сырья, пригодного для последующей переработки на существующем технологическом оборудовании с получением дополнительного количества металлического магния, используемого непосредственно в аппаратурно-технологическом комплексе для магниетермического производства титана и дополнительного выпуска анодного хлора, используемого для хлорирования титановых шлаков.

Поставленная задача решается при реализации предлагаемого аппаратурно-технологического комплекса по производству титана и магния, включающего в своем составе следующее основное производственное оборудование:

- руднотермическую печь (1) для восстановительной плавки титансодержащего минерального сырья с получением обогащенных по диоксиду титана шлаков;

- солевой хлоратор (2) для хлорирования титановых шлаков в расплаве хлоридов металлов анодным хлором магниевых электролизеров, с получением технического тетрахлорида титана;

- систему очистки технического тетрахлорида титана от примесей (3);

- передел магниетермического получения металлического титана (4), снабженный сборниками образующегося расплава хлорида магния (5);

- участок обезвоживания исходного карналлитового сырья, содержащий печь кипящего слоя (6), карналлитовый хлоратор (7) и сборный миксер (8) для хлоридных шламов;

- отделение-1 электролиза (9) для получения металлического магния, реализуемого как товарный продукт и используемого для магниетермического производства титана и для получения анодного хлора, направляемого в солевой хлоратор для хлорирования титановых шлаков, емкости для сбора отработанного электролита магниевых электролизеров;

- отделение-2 электролиза (10) расплава хлорида магния с получением оборотного металлического магния, возвращаемого на передел магниетермического получение титана и получения анодного хлора, используемого для хлорирования титановых шлаков.

НОВЫМ в предлагаемой полезной модели является то, что:

- солевой хлоратор оборудован ванной гидроудаления отработанного расплава (11), имеющий соединение с циркуляционным баком (12);

- патрубок нижнего слива (13) образующейся в процессе циркуляции и концентрирования хлоридного раствора из циркуляционного бака (12) имеет соединение со сборной емкостью (14);

- выход из сборной емкости направлен в обогреваемый реактор (15) с мешалкой для осаждения суммы оксигидратов металлов;

- реактор для осаждения (15) соединен с дозировочной емкостью с магнийсодержащими щелочными реагентами;

- передел магниетермического получения титана (5), участок обезвоживания карналлита и отделение-1 электролиза (9) оборудованы

снабженными перемешивающими устройствами емкостями (19, 20, 21) для гидроразмыва хлоридных расплавов, соединенными с циркуляционными баками (22, 23, 24) для гидроразмыва соответственно части расплава хлорида магния (19), шламов карналлитовых хлораторов (20) и отработанного электролита (24);

- патрубки нижнего слива циркуляционных баков (22, 23, 24) соединены с обогреваемым реактором (25) с мешалкой для очистки хлоридных растворов от примесей;

- на крышке реактора (25) имеются патрубки, один из которых подсоединен к баку-дозатору (26) раствора гидроксида натрия и/или калия, а другой патрубок имеет соединение с дозатором (27) растворов сульфида и/или гидросульфида и/или полисульфида натрия;

- патрубок нижнего слива суспензии из реактора (25) направлен на фильтр-пресс II (28), выход из которого очищенных от примесей растворов хлоридов магния и калия направлен в сборную емкость (18), имеющей соединение с установкой для выпаривания (29), кристаллизатором (30) и печью кипящего слоя (6).

РЕАЛИЗАЦИЯ ПРЕДЛАГАЕМОЙ ПОЛЕЗНОЙ МОДЕЛИ

Измельченные титансодержащие концентраты (ильменитовые и/или ильмено-рутиловые) смешивают с углеродным восстановителем (антрацит, нефтяной и/или пековый кокс) и подают в руднотермическую печь для восстановительной электроплавки с получением чугуна и титанового шлака, обогащенного по диоксиду титана до 82-88% ТiO 2. Титановый шлак охлаждают, дробят, измельчают, смешивают с отработанным электролитом отделения-1 электролиза, работающего на обезвоженном карналлите. Получаемую шихту загружают в солевой хлоратор (2), для хлорирования анодным хлором, образующимся в отделении-1 электролиза и отделении-2 электролиза; парогазовую смесь, образующуюся в солевом хлораторе (2)

подают в систему конденсации с получением технического тетрахлорида титана, который направляют в систему очистки от примесей (3); очищенный тетрахлорид титана подают на передел (4) магниетермического получения металлического титана (титановой губки); на этот же передел поступает металлический магний с двух отделений электролиза - 1 и 2, соответственно, электролиза-1 обезвоженного карналлита (9) и электролиза-2 «оборотного» расплава хлорида магния (10). Получаемый на переделе (4) металлический титан - титановую губку отгружают потребителям, образующийся в процессе электролиза анодный хлор направляют в солевой хлоратор (2) для хлорирования титановых шлаков; избыточный хлор, образующийся, в частности, в производстве металлического магния в отделении-1 электролиза (9) из карналлитового сырья направляют на утилизацию (например, на сжижение) и/или на обезвреживание - на газоочистные сооружения; образующийся при магниетермическом получении титана расплав «оборотный» расплав хлорида магния возвращают в отделение-2 электролиза для получения магния и хлора (10), используемых непосредственно в общем «Аппаратурно-технологическом комплексе по производству титана и магния». Периодически - по мере загрязнения оборотного расплава MgCl2 примесями ионов тяжелых металлов (Ni, Fe и др.) - этот «оборотный» расплав выводят (в количестве от 5-10%) из технологического цикла - для предотвращения последующего загрязнения получаемого металлического магния и связи с этим ухудшения качества производимого металлического титана. Для этого «оборотный» хлоридный расплав MgCl 2 периодически сливают в специальную емкость (19) с мешалкой, оборудованную для «гидроразмыва» расплава, соединенную с циркуляционным баком (22), откуда получаемый концентрированный раствор хлорида магния поступает в сборную емкость (26) для хлоридных растворов и суспензий из различных отделений и переделов «Аппаратурно-технологического комплекса». Отработанный хлоридный расплав солевого хлоратора титанового производства (2) периодически сливают из хлоратора (2) в ванну гидроудаления (11), откуда суспензию (хлоридный раствор - нерастворимый,

т.е. непрохлорированный остаток шихты) подают в циркуляционный бак (12). Циркуляцию суспензии между ванной гидроудаления (11) и циркуляционным баком (12) ведут 4-6 раз - до образования концентрированного хлоридного раствора, т.е. до образования насыщенного по сумме хлоридов металлов раствора, после чего образующийся раствор закачивают из циркуляционного бака (12) через патрубок нижнего слива (13) в сборно-расходную емкость (14). Из этой емкости хлоридный раствор подают в обогреваемый реактор (15) с мешалкой, из дозировочной емкости (16) в обогреваемый реактор (15) при включенной мешалке порциями подают - из дозировочной емкости (16) магнийсодержащие оксидные материалы (в виде магнезиального молока, и/или влажной пасты, и/или порошкообразной форме). После осаждения в реакторе (15), оксигидратную пульпу перемешивают, при нагревании выдерживают 0,5-2 часа и закачивают на фильтр-пресс 1 (17); очищенный от примесей тяжелых металлов фильтрат-раствор хлоридов магния и калия заливают в сборную емкость (18) хлоридных растворов. Шламы карналлитовых хлораторов для обеспечения их утилизации сливают из сборного миксера (18) в емкость (20) с мешалкой, предварительно заполненную водой или оборотными промывными растворами - с фильтр-прессов 1 и 2, или оборотными хлоридными растворами из циркуляционного бака (23). После циркуляции и образования раствора, насыщенного по хлоридам магния и калия, этот раствор (суспензию) перекачивают в сборную емкость (26), в которую также заливают другие хлоридные растворы и суспензии из других отделений, переделов и участков. Отработанный электролит (70-80% КСl, остальное - MgCl2, MgO, NaCl и др.) магниевых электролизеров отделения-1 электролиза, работающего на карналлитовом сырье, частично направляют (после охлаждения, дробления и измельчения) на приготовление шихты для хлорирования титановых шлаков в солевом хлораторе (2), другую часть отработанного электролита сливают в емкость (21) с мешалкой, предварительно заполненную водой, промывочным или циркуляционным раствором - из циркуляционного бака (24). После образования в

циркуляционном баке насыщенного хлоридного раствора, этот раствор перекачивают в сборную емкость (26), в которой происходит смешение насыщенных по хлоридам Mg и К растворов от гидроразмыва расплава MgCl2 , шламов карналлитовых хлораторов и отработанного электролита отделения-1 электролиза. Хлоридный раствор (суспензию), содержащую MgCl2, KCl и небольшое количество примесей других металлов, в т.ч. твердую фазу, перекачивают из сборной емкости (25) в обогреваемый реактор (26) с мешалкой. В этот реактор при включенной мешалке последовательно подают из бака-дозатора (27) раствор (20-150 г/дм3) гидроксида натрия и/или калия, затем из дозатора (28) раствор сульфида и/или гидросульфида и/или полисульфида натрия/калия, пульпу в реакторе перемешивают, выдерживают и подают на фильтр-пресс - 2, на котором твердую фазу отделяют от очищенного от примесей раствора MgCl 2 и KCl. Полученный очищенный раствор (MgCl 2+KCl) закачивают в сборную емкость (18), в которой собирают все очищенные от примесей растворы (MgCl2 и KCl), полученные при переработке хлоридных отходов - расплавов титано-магниевого производства. Затем эти растворы направляют на установку для выпаривания (29), в кристаллизатор (30), после чего подготовленное таким образом карналлитовое сырье направляют на I стадию обезвоживания - в печь кипящего слоя.

Таким образом, реализация разработанного технического решения, в частности совокупность оборудования, входящего в состав заявленного «Аппаратурно-технологического комплекса по производству титана и магния» обеспечивает переработку и утилизацию всех отработанных хлоридных расплавов, образующихся на различных переделах, участках и отделениях «Комплекса» и дает возможность получать из отходов производства карналлитовое сырье, что, в свою очередь, позволяет исключить зависимость всего титано-магниевого производства от поставщиков карналлита - ОАО «Сильвинит» и ОАО «Уралкалий».

1 - руднотермическая печь для восстановительной плавки титансодержащих концентратов (например, ильменитовых FеТiO 3 и/или ильмено-рутиловых FeTiO3·TiO 2) с получением чугуна и титанового шлака (82-88% ТiO 2);

2 - солевой хлоратор для хлорирования анодным хлором (из отделения-1 и отделения-2 электролиза карналлита и хлорида магния соответственно) титановых шлаков в хлоридном расплаве - отработанном электролите отделения-1 электролиза магния из карналлитового сырья;

3 - система очистки технического тетрахлорида титана от примесей;

4 - передел магниетермического получения металлического титана (титановой губки) и расплава хлорида магния;

5 - сборник расплава хлорида магния;

6 - печь кипящего слоя для I стадии обезвоживания карналлитового сырья;

7 - карналлитовый хлоратор для II стадии обезвоживания карналлитового сырья;

8 - сборный миксер для хлоридных шламов карналлитовых хлораторов;

9 - отделение-1 электролиза обезвоженного карналлита для электролитического получения металлического магния, реализуемого как товарный продукт и направляемого для магниетермического производства титана, и получения анодного хлора, направляемого в солевой хлоратор для хлорирования титановых шлаков в хлоридном расплаве - отработанном электролите отделения-1 электролиза;

10 - отделение-2 электролиза расплава хлорида магния (образующегося при магниетермическом получении титана из тетрахлорида титана) с получением металлического магния, возвращаемого на передел (4) магниетермического производства титана и с получением анодного хлора, направляемого в солевой хлоратор (2) для хлорирования титановых шлаков;

11 - ванна гидроудаления отработанного расплава солевого хлоратора (2);

12 - циркуляционный бак для получения концентрированного насыщенного по сумме хлоридов металлов раствора;

13 - патрубок нижнего слива из циркуляционного бака;

14 - сборная и расходная емкость концентрированного насыщенного по сумме хлоридов металлов раствора от гидроразмыва отработанного расплава солевых хлораторов;

15 - обогреваемый реактор с мешалкой для осаждения из раствора суммы оксигидратов раствора хлоридов магния и калия от примесей тяжелых металлов (Fe, Cr, Мn, Ti, Zr, Th и др.);

16 - дозировочная емкость с магнийсодержащими щелочными реагентами;

17 - фильтр-пресс 2 для выделения из пульпы осадка и его промывки водой;

18 - сборная емкость растворов MgCl2 и КСl, очищенных от примесей тяжелых металлов и взвешенных веществ;

19, 20 и 21 - емкости, снабженные перемешивающими устройствами для гидроразмыва, соответственно: части расплава хлорида магния (19), шламов (20) карналлитовых хлораторов, отработанного электролита отделения электролиза-1, электролизеров для получения магния из карналлитового сырья (21);

22, 23 и 24 - циркуляционные баки для получения концентрированных насыщенных хлоридных растворов;

25 - обогреваемый реактор с мешалкой для очистки растворов хлоридов магния и калия от примесей;

26 - бак-дозатор раствора гидроксида натрия и/или калия;

27 - дозатор раствора сульфида, гидросульфида и/или полисульфида натрия;

28 - фильтр-пресс 2 для очистки растворов хлоридов магния и калия от твердой фазы;

29 - установка для выпаривания;

30 - кристаллизатор.

Аппаратурно-технологический комплекс по производству титана и магния, включающий руднотермическую печь для восстановительной плавки титансодержащего минерального сырья с получением обогащенных по диоксиду титана шлаков; солевой хлоратор для хлорирования титановых шлаков в расплаве хлоридов металлов анодным хлором магниевых электролизеров с получением технического тетрахлорида титана; систему очистки технического тетрахлорида титана от примесей; передел магниетермического получения металлического титана, снабженный сборниками образующегося расплава хлорида магния, участок обезвоживания исходного карналлитового сырья, содержащий печь кипящего слоя, карналлитовый хлоратор и сборный миксер для хлоридных шламов, отделение-1 электролиза для получения металлического магния как товарного продукта и используемого для магниетермического получения титана и для получения анодного хлора, направляемого в солевой хлоратор для хлорирования титансодержащих шлаков, емкости для сбора отработанного электролита магниевых электролизеров; отделение-2 электролиза расплава хлорида магния с получением оборотного металлического магния, возвращаемого на передел магниетермического получения титана и для получения анодного хлора, используемого для хлорирования титановых шлаков, отличающийся тем, что солевой хлоратор оборудован ванной гидроудаления отработанного расплава, соединенной с циркуляционным баком, патрубок нижнего слива образующегося в процессе циркуляции концентрированного хлоридного раствора из циркуляционного бака имеет соединение со сборной емкостью, выход из сборной емкости направлен в обогреваемый реактор с мешалкой для осаждения суммы оксигидратов металлов, реактор для осаждения соединен с дозировочной емкостью с магнийсодержащими щелочными реагентами, патрубок нижнего слива очищенной суспензии из реактора соединен с фильтр-прессом-1, выход очищенного от примесей тяжелых металлов растворов хлорида магния и калия направлен в сборную емкость, передел магниетермического получения титана, участок обезвоживания карналлита и отделение-1 электролиза обезвоженного карналлита оборудованы снабженными перемешивающими устройствами емкостями хлоридных расплавов, соединенными с циркуляционными баками и баком-сборником хлоридных растворов, соединенными с обогреваемым реактором, снабженным мешалкой, на крышках реакторов имеются патрубки, один из которых подсоединен к баку-дозатору растворов гидроксида натрия, а другой патрубок имеет соединение с баком-дозатором растворов сульфида и/или гидросульфида натрия и/или калия, патрубок нижнего слива реактора соединен с фильтр-прессом-2, выход из которого очищенного от примесей хлоридного раствора направлен в сборную емкость растворов хлоридов магния и калия, имеющим соединение с последовательно расположенным участком для выпарки, кристаллизации и печью кипящего слоя.



 

Похожие патенты:

Котел газовый двухконтурный отопительный водяной относится к отопительным и бытовым аппаратам и водонагревательным устройствам в малоэтажных, частных домах и квартирах.

Полезная модель используется для получения хлорсодержащих окислителей, применяемых при обеззараживании и очистке питьевой воды, сточных и оборотных вод. Процесс получения раствора диоксида хлора и хлора ведут в двухкамерном реакторе непрерывным способом путем взаимодействия реагентов: раствора хлората и хлорида натрия с серной кислотой высокой концентрации.
Наверх