Устройство для лазерной термической обработки материалов

 

Полезная модель относится к устройствам для термической обработки поверхности материалов и может быть использовано в машиностроении для получения деталей с повышенными эксплуатационными характеристиками. Сущность полезной модели заключается в том, что для повышения производительности, снижения энергозатрат при лазерной обработке металлических и неметаллических материалов, расширения функциональных возможностей за счет обработки материалов с узким диапазоном температур термообработки дополнительно установлены аксиконная линза, оптически связанная с телескопической системой, ответвитель, оптически связанный с фокусатором, направляющий часть лазерного излучения к оптическому блоку радиометра, расположенному в плоскости, оптически сопряженной с плоскостью обработки, и система бесконтактной диагностики температур, содержащая блок оптической визуализации температурного поля в рабочей зоне регистрирующего изменение температурного поля радиометра и поворотное зеркало для доставки теплового излучения от исследуемых участков объекта к радиометру. 1 илл.

Полезная модель относится к устройствам для термической обработки поверхности материалов и может быть использовано в машиностроении для получения деталей с повышенными эксплуатационными характеристиками.

Известны устройства для лазерной обработки - механические сканирующие системы (Технологические лазеры: Справочник: В 2 т. / Г.А.Абильсиитов, В.Г.Гонтарь, Л.А.Новицкий и др. Под общ. ред. Г.А.Абильсиитова. М.: Машиностроение. 1991. Т.1: Расчет, проектирование и эксплуатация. - 432 с., Т.2: Системы автоматизации. Оптические системы. Системы измерения. - 544 с.), обеспечивающие получения светового контура на обрабатываемой поверхности за счет одно- или двухкоординатного перемещения их элементов.

Недостатками известных устройств являются неравномерность энерговыделения на поверхности зоны лазерного воздействия из-за высокой инерционности системы и колебательного закона осцилляции луча, высокая стоимость, низкая надежность из-за наличия механических частей, движущихся с большими скоростями. Такие устройства не могут обеспечить одновременного сочетания таких свойств, как создание требуемого распределения интенсивности, концентрации энергии лазерного излучения в зоне воздействия заданной формы и высокой надежности.

Наиболее близким техническим решением является устройство для лазерной обработки материалов (А.с. 1839119 СССР В 21 D 5/01. Опубл. 30.12.1993. Бюл. 48-47), содержащее технологический лазер и установленный с возможностью поворота вокруг нормали к рабочей поверхности фокусатор.

Для лазерной термической обработки материалов, имеющих узкий диапазон температур термообработки, такое устройство не применимо, поскольку имеет следующий недостаток: неравномерность глубины зоны

обработки по ширине зоны термического влияния и физико-механических свойств материала. Несоответствие распределения плотности энергетического потока на поверхности заданному изменению состояния технологических объектов приводит уже на стадии обработки к образованию различных дефектов, таких, как для тонкостенных деталей: пережоги, крупнозернистость, локальные оплавления и коробление листовых заготовок из-за неравномерного тепловыделения по ширине зоны термического влияния. Для объемных деталей характерны следующие дефекты: неравномерное распределение механических свойств по ширине зоны термического влияния; неравномерная глубина обработки; локальные оплавления; повышенная хрупкость изделия вследствие перегрева центральной и недостаточная твердость при упрочняющей обработке в результате недогрева периферийных областей энергетического воздействия.

В основу полезной модели поставлена задача: разработать устройство, которое позволит повысить производительность, снизить энергозатраты при лазерной обработке металлических и неметаллических материалов, расширить функциональные возможности за счет обработки материалов с узким диапазоном температур термообработки.

Данная задача решается тем, что в устройстве для лазерной термической обработки материалов, содержащем технологический лазер и установленный с возможностью поворота вокруг нормали к рабочей поверхности фокусатор, согласно полезной модели дополнительно установлены аксиконная линза, оптически связанная с телескопической системой, ответвитель, оптически связанный с фокусатором, направляющий часть лазерного излучения к оптическому блоку радиометра, расположенному в плоскости, оптически сопряженной с плоскостью обработки, и система бесконтактной диагностики температур, содержащая блок оптической визуализации температурного поля в рабочей зоне регистрирующего изменение температурного поля радиометра и поворотное зеркало для доставки теплового излучения от исследуемых участков объекта

к радиометру.

На чертеже изображена схема устройства для лазерной термической обработки материалов.

Устройство состоит из аксиконой линзы 1, оптически связанной с телескопической системой 2, фокусатора 3, оптически связанного с ответвителем 4 и оптическим блоком радиометра 5, расположенным в плоскости, оптически сопряженной с плоскостью обработки, и системы бесконтактной диагностики температур, содержащей поворотное зеркало 6, телескопическую систему 7, оптические фильтры 8, блок оптической визуализации температурного поля в рабочей зоне регистрирующего изменение температурного поля радиометра 9 и аналогово-цифровые преобразователи 10. Для повышения эффективности энерговклада на обрабатываемый материал 11 наносят специальные поглощающие покрытия 12. Стрелками обозначено направление распространения излучения.

Работа предлагаемого устройства происходит следующим образом: лазерное излучение А мощностью Q, сфокусированное в световое пятно длиной L, с распределением плотности мощности q(x, у) воздействует на обрабатываемый материал 11 шириной Н 1 и толщиной Н2. При перемещении обрабатываемого материала 11 с постоянной или переменной скоростью u образуется зона обработки, т.е. область, где материал нагревается выше температуры фазового или структурного перехода, шириной b. Заданная ширина зоны обработки не может быть получена любым из способов местного нагрева кроме лазерного, поскольку они при передаче тепла не обладают высокой плотностью энергии. Определение скорости перемещения светового отрезка, мощности и распределения плотности мощности лазерного излучения проводят расчетным путем, решая обратную задачу теплопроводности. В процессе обработки проводят контроль мощности и распределения плотности мощности лазерного

излучения по его ответвленной части Б, а также температуры на поверхности обрабатываемого материала. Тепловое излучение В от исследуемых участков объекта отражается поворотным зеркалом 6, установленным под углом 35...40° к оптической оси падающего излучения (позиция I для регистрации температурного поля в объемных деталях) или с обратной стороны технологического объекта (позиция II для регистрации температурного поля в листовых деталях). Телескопическая система контроля температур 8 увеличивает поперечный размер потока теплового излучения и одновременно уменьшает его плотность мощности. Германиевый и сапфировый фильтры 8 ограничивают спектральный диапазон пропускания. Температурное поле регистрируется приемником излучения в оптическом блоке регистрирующего изменение температурного поля радиометра 9. Ирисовая диафрагма позволяет изменять относительное отверстие объектива, уменьшая входной поток излучения при исследовании высокотемпературных объектов. Угловое искажение термоизображений исправляется программными средствами автоматизированной системы бесконтактной диагностики. В состав электронных блоков тепловизоров входят аналогово-цифровые преобразователи 10. Цифровые сигналы через устройства ввода/вывода видеоизображения поступают в персональный компьютер. Расстояние от обрабатываемой поверхности до входного окна объектива радиометра составляет не менее 0,4 м.

Применение предполагаемого устройства для лазерной термической обработки материалов с использованием дифракционных оптических элементов (фокусаторов излучения) в технологии лазерной обработки материалов открывает принципиально новые возможности управления свойствами и эксплуатационными характеристиками обрабатываемых деталей путем целенаправленного изменения формы пятна нагрева и распределения плотности мощности энергетического потока.

Максимальное сечение пучка после преломления в аксиконе должно

совпадать с передним фокусом телескопической системы. При смещении минимального сечения вдоль направления распространения излучения формируется сходящий пучок лучей, в противоположном направлении - расходящийся. В этих случаях распределение плотности мощности на поверхности обрабатываемого материала зависит от расстояния между телескопической системой и фокусатором, что оказывает негативное влияние на результаты термической обработки. Для получения пучка с минимальной расходимостью (близкой к дифракционной) необходимо соблюдать условие совпадения минимального сечения пучка после преломления в аксиконе с передним фокусом телескопической системы.

Поскольку специфика взаимодействия высококонцентрированных потоков энергии с деталью делает невозможным использование контактных способов измерения температуры, то контроль температурных полей осуществляется оптико-электронной системой анализа потоков теплового излучения. При температуре Т поверхности от 1000 до 1800 К большая часть энергии излучения с поверхности технологических объектов приходится на спектральный диапазон d=(1...6)·10-3 м. В этой области ИК-спектра излучательная способность материалов в меньшей степени зависит от шероховатости их поверхности, т.к. длина волны излучения становится больше размеров самих неровностей. Использование оптико-электронного инфракрасного радиометра позволяет обеспечить однозначность и пропорциональность значения сигнала отклика контролируемому параметру.

Элементная база из радиометра - блока оптической визуализации температурного поля в рабочей зоне, блока ввода-вывода видеоизображения и персонального компьютера в состоянии обеспечить создание автоматизированных систем с использованием программных средств обработки изображений. Оптический блок регистрирующего изменение температурного поля радиометра сопряжен с персональным компьютером. Соответствие излучательной способности поверхности исследуемого объекта

значениям уровня и диапазона исследуемых температур устанавливаются в режиме калибровки сигнала по контрольной платино-родиевой термопаре.

При проведении исследований в лаборатории лазерных технологий кафедры АСЭУ СГАУ для калибровки сигнала использовался также контактный способ измерения температуры терморезистором, тарированным по показаниям ртутного термометра и платино-родиевой термопары. Регистрация временной зависимости температуры проводилась при использовании устройства сопряжения - асинхронного логического анализатора, выполненного в виде платы расширения персонального компьютера. Визуальное наблюдение нестационарных процессов в их развитии, неразрушающая диагностика и термографические исследования поверхности объекта, нагретой до температуры Т1800 К, проводились при использовании ослабителя теплового излучения. Энергия излучения преобразовывалась в пропорциональный ей электрический сигнал, которой управлял яркостью луча, перемещающегося по экрану электроннолучевой трубки видеоконтрольного устройства. Распределение температуры по поверхности объекта фиксировалось в виде изображения с различной яркостью участков или в условных цветах палитры RGB. Обработка информации о нестационарных тепловых процессах в зоне лазерного воздействия осуществлялась с использованием разработанного программного обеспечения, функционирующего в среде Windows 98/ME/2000/XP и имеющего многооконный интерфейс. Анализ термоизображения проводился как в автоматическом режиме работы, так и в командном интерактивном. Реализовывались различные комбинации воспроизведения, записи и сравнения термограмм. Например, изображение или его часть фиксировалось в режиме "стоп-кадр" с увеличением отдельных участков. В этом случае, на одной части экрана могла быть воспроизведена эталонная термограмма, а на другой - в реальном масштабе времени визуализировался характер распределения температур объекта.

Устройство для лазерной термической обработки материалов, содержащее технологический лазер и установленный с возможностью поворота вокруг нормали к рабочей поверхности фокусатор, отличающееся тем, что дополнительно установлены аксиконная линза, оптически связанная с телескопической системой, ответвитель, оптически связанный с фокусатором, направляющим часть лазерного излучения к оптическому блоку радиометра, расположенному в плоскости, оптически сопряженной с плоскостью обработки, и система бесконтактной диагностики температур, содержащая блок оптической визуализации температурного поля в рабочей зоне регистрирующего изменение температурного поля радиометра и поворотное зеркало для доставки теплового излучения от исследуемых участков объекта к радиометру.



 

Похожие патенты:

Плазменная обработка представляет собой воздействие на обрабатываемую поверхность или объект посредством плазмы высокой температуры. При этом, форма, структура и размер рабочего образца трансформируется. Плазменно-механическая обработка металлов проводится с использованием специализированных приборов - плазмотронов (дугового и высокочастотного типов) и позволяет напылять на поверхность разные покрытия, а также производить бурение горных пород, сварку, наплавку, плазменную резку металлических образцов и другие работы.
Наверх