Устройство для измерения параметров сигнала

 

Полезная модель относится к области радиоизмерительной техники. Устройство содержит измерительный преобразователь, подключенный к одному из входов первого коммутатора, выход этого коммутатора соединен с одним из входов управляемого сопротивления через линию для передачи сигнала, другой вход управляемого сопротивления подключен к входу второго коммутатора, один выход которого подключен ко входу измерительного прибора. Управляющие выводы коммутаторов соединены с первым выходом блока управления, а второй выход блока управления подсоединен к управляющему выводу управляемого сопротивления. Источник номинального напряжения подключен к другому входу второго коммутатора через эталонное сопротивление, при этом эталонное сопротивление также подключено к входам датчика тока, выход которого подключен к входу блока управления, а второй вход первого коммутатора соединен с общим проводом линии и измерительного преобразователя. Полезная модель позволяет упростить устройство, а также повысить точность и надежность измерения параметров сигнала их передачи по линиям связи.

Полезная модель относится к области радиоизмерительной техники и может быть использована для измерения параметров слабых сигналов в телеметрических системах, измерительные датчики которых расположены на значительном расстоянии от регистрирующей аппаратуры. В связи с этим на регистрируемый сигнал оказывают влияние внешние (природные) факторы, которые могут значительно искажать зафиксированные значения слабых сигналов.

Измерительные датчики могут быть размещены на обширной территории для целей мониторинга технических объектов и соединяются с регистрирующей аппаратурой с помощью длинных проводных линий. Длины этих линий различны и могут достигать тысяч метров.

Измеренные параметры слабых сигналов, их спектральный состав и максимальные значения отражают технические особенности и динамику развития наблюдаемого объекта. Анализ сигналов дает информацию о состоянии объекта и об аномалиях его развития, что позволяет принимать правильные и своевременные решения по его эксплуатации.

Чем сложнее объект и чем больше его значимость, тем большие требования предъявляются к точности измерений и анализу параметров сигнала с целью выявления предпосылок к снижению надежности работы этого объекта. Важнейшим условием для обеспечения высокой точности измерений при мониторинге является стабильность параметров всех звеньев измерительной системы, учитывая долговременный характер мониторинговых работ. В этом случае важным является контроль параметров линий связи и устранение влияния данного фактора на сигналы измерительных датчиков.

При изменении температуры окружающей среды электрические характеристики линий связи варьируются в больших пределах. Поэтому в измерительных системах мониторинга используют устройства и методы компенсации изменения электрических параметров линий, позволяющие повысить точность измерения сигналов при передачи их по линиям большой длинны.

Известен метод образцовых мер и сигналов, который основан на последовательных измерениях и сравнении измеряемой величины с образцовой величиной. В работе [1] на стр.100 приведена схема устройства, использующего данный способ коррекции. Устройство содержит два источника образцовых сигналов, коммутатор, средство измерений и вычислительное устройство. Сначала измеряют исследуемый сигнал, а затем образцовые сигналы. После чего, составляя систему из трех уравнений, находят аппроксимирующую градуировочную характеристику и вычисляют значения исследуемого сигнала.

Данные метод и устройство имеют недостатки, связанные с температурной зависимостью активного сопротивления. Это значительно проявляется при измерении сигналов с пачками импульсов, значительно превышающими по амплитуде слабые сигналы, и при изменении температуры окружающей среды. А именно, один и тот же сигнал, присутствующий на выходе измерительного датчика, на входе устройства регистрации будет иметь различные значения в зависимости от сопротивления линии. Также в данном устройстве полученные значения искаженного сигнала используются в дальнейшем для вычисления истинных значений сигнала с помощью аппроксимирующей характеристики.

Таким образом, в рассмотренном устройстве возникают два вида погрешности измерений, которые не позволяют с достаточной точностью измерять сигналы при наличии импульсов и к тому же передаваемые через линии с изменяющимся сопротивлением при изменении температуры.

Известно устройство для измерения параметров сигнала [2], которое берется за прототип, содержащее измерительный преобразователь и источник образцового сигнала, подключенные к входам коммутатора, линию передачи сигнала, второй коммутатор, управляемое сопротивление, измерительный прибор, блок управления, элемент сравнения и источник номинального напряжения. Выход первого коммутатора связан с

последовательно соединенной линией передачи сигнала, управляемым сопротивлением и вторым коммутатором. Управляющие выводы коммутаторов соединены с первым выходом блока управления. Один выход второго коммутатора подключен к входу измерительного прибора, а другой - к одному из входов элемента сравнения. Ко второму входу элемента сравнения подключен источник номинального напряжения. Выход элемента сравнения соединен с входом блока управления, ко второму выходу которого подсоединен управляющий вывод управляемого сопротивления. В этом устройстве происходит суммарная коррекция сопротивления линии по результату сравнения номинального напряжения и напряжения источника сигнала, измеренного после второго коммутатора.

Недостатком этого устройства для измерения параметров сигнала является то, что при телеметрии затруднительно использовать удаленный источник образцового сигнала, а так же возникает необходимость в наличии средств контроля удаленного источника. Это необходимо для обеспечения точности и надежности измерений, что предъявляет очень жесткие требования к применению данного устройства и в случае использования пассивных датчиков в системе мониторинга эти требования трудновыполнимы. Кроме того, для уменьшения влияния температуры окружающей среды на результаты регистрации слабых сигналов необходимо использовать схему температурного контроля питания для источника образцового сигнала и для источника номинального напряжения, что обусловлено значительными изменениями температуры окружающей среды при мониторинге. Наличие двух независимых источников образцового и номинального напряжений приводит к погрешности измерений, связанной с возможной взаимной нестабильностью источников.

Таким образом, в рассмотренном устройстве наличие двух независимых источников измерительных напряжений и отсутствие средств контроля удаленного источника образцового сигнала не позволяет с достаточной точностью и надежностью измерять параметры слабых сигналов передаваемых через проводные линии с изменяющимся сопротивлением при изменении температуры.

Задача, на решение которой направлено заявляемое устройство, заключается в упрощении устройства, а также в повышении точности и надежности измерения параметров сигнала, поступающего от измерительного датчика к регистрирующей аппаратуре, через проводную линию.

Причем сигналы являются слабыми, имеют широкую полосу частот, по характеру близки к случайным. В реальных условиях может происходить увеличение сопротивления линии не только из-за повышения температуры, но и вследствие коррозии и старении провода, а также из-за ухудшения контактного соединения линии со стороны контролируемого объекта. Устранение этих явлений также входит в решение задачи.

Сущность изобретения заключается в том, что в устройство для измерения параметров сигнала, содержащее измерительный преобразователь, подключенный к одному из входов пер1зого коммутатора, при этом выход этого коммутатора соединен с одним из входов управляемого сопротивления через линию для передачи сигнала, другой вход управляемого сопротивления подключен к входу второго коммутатора, один выход которого подключен ко входу измерительного прибора, причем управляющие выводы коммутаторов соединены с первым выходом блока управления, а второй выход блока управления подсоединен к управляющему выводу управляемого сопротивления введено эталонное сопротивление, через которое источник номинального напряжения подключен ко другому входу второго коммутатора, при этом эталонное сопротивление также подключено к входам датчика тока, выход которого подключен к входу блока управления, а второй вход первого коммутатора соединен с общим проводом линии и измерительного преобразователя. В случае изменения сопротивления линии, на выходе датчика тока появится сигнал пропорциональный этому изменению. Сигнал с выхода датчика тока подается на вход блока управления, который вырабатывает сигнал управления для управляемого сопротивления. В результате управляемое сопротивление изменится до момента достижения номинального токового режима в линии. Это позволяет

скомпенсировать изменение сопротивления линии и устранить соответствующие погрешности при измерении параметров сигнала.

Р1а фиг.1. изображена схема устройства для измерения параметров сигнала. Устройство содержит измерительный преобразователь 1, первый коммутатор 2, линию для передачи сигнала 3, последовательно соединенные управляемое сопротивление 4 и второй коммутатор 5, блок управления 6, измерительный прибор 7, источник номинального напряжения 8, датчик тока 9 и эталонное сопротивление.

Устройство работает следующим образом. Тестовый контроль сопротивления линии 3 осуществляется при таких положениях коммутаторов 2 и 5, в которых они находятся, как изображено на фиг.1 согласно управляющему воздействию с блока управления 6. Если сопротивление линии изменится, то изменится и значение тока, создаваемого источником номинального напряжения 8. В соответствии с этим на выходе датчика тока 9 появится сигнал, пропорциональный изменению сопротивления линии, который используется для корректировки значения управляемого сопротивления 4 сигналом с выхода устройства управления 6. Благодаря этому суммарное сопротивление линии, включающее сопротивление линии и управляемое сопротивление, остается неизменным. Это позволяет исключить влияние нестабильности характеристик линий связи на результаты измерения параметров сигнала.

Применение датчика тока с эталонным сопротивлением позволяет не предъявлять высоких требований к стабильности источника номинального напряжения. Это может быть пояснено при рассмотрении схемы датчика тока, выполненной на операционном усилителе фиг.2. Уравнение баланса при номинальном режиме работы может быть записано в следующем виде

где Rc - среднее значение управляющего сопротивления.

В этом случае, при использовании устройства управления накапливающего типа значение номинального напряжения может быть нестабильным. Необходимо чтобы напряжения на выходе операционного усилителя при минимальном пороговом отклонении сопротивления линии хватало для срабатывания устройства управления. Это может быть обеспечено соответствующим соотношением резисторов R1 и R2.

ИСТОЧНИКИ ИНФОРМАЦИИ

1. Дворяшин Б.В. Основы метрологии и радиоизмерения. - М.: Радио и связь, 1993. УДК 621.317.

2. Патент РФ №2254580 С1, МПК G 01 R 17/02, Опубликован 20.06.2005 Бюл.№17.

Устройство для измерения параметров сигнала, содержащее измерительный преобразователь, подключенный к одному из входов первого коммутатора, при этом выход этого коммутатора соединен с одним из входов управляемого сопротивления через линию для передачи сигнала, другой вход управляемого сопротивления подключен к входу второго коммутатора, один выход которого подключен ко входу измерительного прибора, причем управляющие выводы коммутаторов соединены с первым выходом блока управления, а второй выход блока управления подсоединен к управляющему выводу управляемого сопротивления, отличающееся тем, что введено эталонное сопротивление, через которое источник номинального напряжения подключен к другому входу второго коммутатора, при этом эталонное сопротивление также подключено к входам датчика тока, выход которого подключен к входу блока управления, а второй вход первого коммутатора соединен с общим проводом линии и измерительного преобразователя.



 

Наверх