Оребренная труба пучка теплообменных труб аппарата воздушного охлаждения газа

 

Полезная модель относится к области теплоэнергетики, а именно к оребренным теплообменным трубам и может быть использована в аппаратах воздушного охлаждения (АВО) газа. Оребренная труба пучка теплообменных труб АВО газа содержит собственно тело теплообменной трубы и наружное оребрение, создающие в поперечном охлаждающем потоке внешней теплообменной среды участки аэродинамического затенения разной интенсивности в условной плоскости, нормальной к вектору упомянутого потока внешней теплообменной среды и проходящей через центральную продольную ось трубы: полного аэродинамического затенения, соответствующего площади проекции на указанную плоскость единицы длины собственно тела трубы без учета оребрения, и неполного аэродинамического затенения, соответствующего суммарной площади проекций на указанную плоскость участков оребрения единицы длины оребренной трубы, ограниченных с каждой стороны условной прямой, проведенной по вершинам ребер, за вычетом площади полного аэродинамического затенения, создаваемого телом трубы без учета оребрения, при этом средняя по радиусу оребрения удельная площадь аэродинамического затенения на участках проекции оребрения на указанную плоскость на единицу длины трубы составляет 0,08-0,55. Технический результат, обеспечиваемый настоящей полезной моделью, состоит в повышении теплоаэродинамических характеристик оребренных теплообменных труб и тепловой эффективности аппарата в целом, а также в уменьшении металлоемкости и габаритов конструкции пучка теплообменных труб АВО газа.

Полезная модель относится к области теплоэнергетики, а именно к оребренным теплообменным трубам и может быть использована в аппаратах воздушного охлаждения (АВО) газа.

Известна биметаллическая теплообменная труба с цельнокатаным оребрением из алюминия с целью уменьшения термического сопротивления, между контактирующими поверхностями трубы и оребрения помещена гильза из пластичного металла свинца, толщиной 200-260 мк, заполняющего образующиеся при накатке пустоты (см. SU 434252, F 28 F 1/24, F 28 F 21/08).

Наиболее близким аналогом является теплообменный цилиндрический элемент, с поперечными ребрами, имеющими на поверхности металлическое покрытие, с целью интенсификации теплообмена, покрытие выполнено из материала с более высокой теплопроводностью, чем материал ребер, и имеет переменную по высоте ребра толщину (SU 1416849, F 28 F 1/24, F 28 F 13/18).

Недостатком известных труб является их недостаточная тепловая эффективность вследствие чего для возможности получения компактного теплообменного аппарата требуются трубы большой протяженности. Для АВО газа оптимизация параметров теплообменных элементов, а точнее оребренных труб, является сложной проблемой ввиду их больших габаритов и большой металлоемкости.

Задачей настоящей полезной модели является повышение теплоаэродинамических характеристик оребренной трубы, повышение ее жесткости и надежности работы.

Поставленная задача в полезной модели - оребренной трубе пучка теплообменных труб аппарата воздушного охлаждения газа решается за счет того, что она содержит собственно тело теплообменной трубы и наружное оребрение, создающие в поперечном охлаждающем потоке внешней теплообменной среды участки аэродинамического затенения разной интенсивности в условной

плоскости, нормальной к вектору упомянутого потока внешней теплообменной среды и проходящей через центральную продольную ось трубы: полного аэродинамического затенения, соответствующего площади проекции на указанную плоскость единицы длины собственно тела трубы без учета оребрения, и неполного аэродинамического затенения, соответствующего суммарной площади проекций на указанную плоскость участков оребрения единицы длины оребренной трубы, ограниченных с каждой стороны условной прямой, проведенной по вершинам ребер, за вычетом площади полного аэродинамического затенения, создаваемого телом трубы без учета оребрения, при этом средняя по радиусу оребрения удельная площадь аэродинамического затенения на участках проекции оребрения на указанную плоскость на единицу длины трубы составляет 0,08-0,55.

Отношение площадей проекций на указанную плоскость участков затенения разной интенсивности к их сумме может составлять соответственно (0,30-0,80):1 и (0,21-0,79):1.

Оребренная труба может быть выполнена не менее, чем двуслойной из материалов с различной теплопроводностью.

По крайней мере, внешний слой трубы выполнен из материала с большей теплопроводностью, чем внутренний слой.

Оребренная труба может быть выполнена биметаллической.

Внешний слой трубы и ее оребрение могут быть выполнены из высокотеплопроводного металла или сплавов, преимущественно из алюминиевого сплава с коэффициентом теплопроводности не менее, чем на 5% превышающим теплопроводность материала внутреннего слоя трубы, в качестве которого использована предпочтительно сталь.

Внешний слой трубы и ее оребрение могут быть выполнены из меди или медьсодержащих сплавов.

Внешний слой трубы и ее оребрение могут быть выполнены из высокопрочного и стойкого к агрессивным средам материала, преимущественно из титана или титансодержащих сплавов.

Внешняя поверхность трубы и ее оребрение могут быть покрыты высокотеплопроводным и стойким к агрессивным средам материалом, например, слоем алюминия или меди, нанесенным анодированием, или напылением, или

плакированием.

Оребрение трубы может быть выполнено в виде спирали из навитой на трубу и прикрепленной к ее корпусу ленты или в виде ребер, образованных накаткой внешнего слоя трубы.

Внешний диаметр трубы до основания ребер составляет от 15 мм до 45 мм. Толщина стенки трубы может составлять от 0,9 до 3,5 мм. Полная высота ребер трубы может составлять от 0,27d до 0,85d, где d - внешний диаметр тела трубы без оребрения.

Полная высота ребер трубы может составлять от 5 мм до 22 мм. Ребра трубы могут быть выполнены толщиной по их внешнему диаметру, составляющей от 0,3 мм до 2,5 мм, а в зоне сопряжения с внешней поверхностью трубы - от 0,5 мм до 3,5 мм, причем в этой зоне ребро сопряжено с трубой по кривой, радиус которой не менее половины толщины ребра в зоне сопряжения.

Оребренная труба может быть выполнена биметаллической с внешним диаметром внутренней несущей трубы, составляющим 25 мм, толщиной стенки 1,5-2,0 мм, полной высотой ребер 15-20 мм, толщиной ребра по его внешнему диаметру 0,5 мм, а в зоне сопряжения с внешней поверхностью трубы 0,8 мм, причем толщина внешнего слоя трубы составляет 1-1,5 мм.

Технический результат, обеспечиваемый настоящей полезной моделью, состоит в повышении теплоаэродинамических характеристик и экономичности оребренной трубы за счет оптимизации параметров оребрения, обеспечивающей оптимальные материалоемкость, весовые характеристики и трудоемкость изготовления.

Сущность полезной модели поясняется чертежами, где изображено:

на фиг.1 - оребренная труба пучка теплообменных труб АВО газа;

на фиг.2 - фрагмент оребренной теплообменной трубы АВО газа, в разрезе;

на фиг.3 - узел А на фиг.1. на фиг.4 - узел Б на фиг.2.

Оребренная труба пучка теплообменных труб АВО газа содержит собственно тело 1 теплообменной трубы и наружное оребрение 2. Тело 1 и оребрение 2 создают в поперечном охлаждающем потоке внешней теплообменной среды участки аэродинамического затенения разной интенсивности в условной

плоскости, нормальной к вектору упомянутого потока внешней теплообменной среды и проходящей через центральную продольную ось трубы, а именно участок 3 полного аэродинамического затенения, соответствующий площади проекции на указанную плоскость единицы длины собственно тела 1 трубы без учета оребрения и участок 4 неполного аэродинамического затенения, соответствующий суммарной площади проекций на указанную плоскость участков оребрения 2 единицы длины оребренной трубы, ограниченных с каждой стороны условной прямой, проведенной по вершинам ребер, за вычетом площади полного аэродинамического затенения, создаваемого телом 1 трубы без учета оребрения, средняя по радиусу оребрения 2 удельная площадь аэродинамического затенения на участках проекции оребрения 2 на указанную плоскость на единицу длины трубы составляет 0,08-0,55.

При этом отношение площадей проекций на указанную плоскость упомянутых участков 3 и 4 затенения разной интенсивности к их сумме составляет соответственно (0,30-0,80): 1 и (0,21-0,79):1.

Оребренная труба может быть выполнена не менее, чем двуслойной из материалов с различной теплопроводностью.

По крайней мере, внешний слой 5 трубы выполнен из материала с большей теплопроводностью, чем внутренний 6 слой.

Оребренная труба может быть выполнена биметаллической.

Внешний слой 5 трубы и ее оребрение 2 могут быть выполнены из высокотеплопроводного металла или сплавов, преимущественно из алюминиевого сплава с коэффициентом теплопроводности не менее, чем на 5% превышающим теплопроводность материала внутреннего слоя трубы, в качестве которого использована предпочтительно сталь.

Внешний слой 5 трубы и ее оребрение 2 могут быть выполнены из меди или медьсодержащих сплавов.

Внешний слой трубы 5 и ее оребрение 2 могут быть выполнены из высокопрочного и стойкого к агрессивным средам материала, преимущественно из титана или титансодержащих сплавов.

Внешняя поверхность трубы и ее оребрение могут быть покрыты высокотеплопроводным и стойким к агрессивным средам материалом, например,

слоем алюминия или меди, нанесенным анодированием, или напылением, или плакированием.

Оребрение 2 трубы может быть выполнено в виде спирали из навитой на трубу и прикрепленной к ее корпусу ленты или в виде ребер 7, образованных накаткой внешнего слоя трубы.

Внешний диаметр трубы составляет от 15 мм до 45 мм.

Толщина 6 стенки трубы до основания ребер может составлять от 0,9 до 3,5 мм.

Полная высота h ребер оребрения трубы может составлять от 0,27d до 0,85d, где d - внешний диаметр тела трубы без оребрения, предпочтительно от 5 мм до 22 мм.

Ребра трубы могут быть выполнены толщиной n по их внешнему диаметру, составляющей от 0,3 мм до 2,5 мм, а в зоне сопряжения с внешней поверхностью трубы m - от 0,5 мм до 3,5 мм, причем в этой зоне ребро сопряжено с трубой по кривой, радиус R которой не менее половины толщины ребра в зоне сопряжения.

Оребренная труба может быть выполнена биметаллической с внешним диаметром d 1 внутренней несущей трубы, составляющим 25 мм, толщиной стенки 51,5-2 мм, полной высотой h ребер оребрения 15-20 мм, толщиной п ребра по его внешнему диаметру 0,5 мм, а в зоне сопряжения с внешней поверхностью внешнего слоя трубы m - 0,8 мм, причем толщина внешнего слоя у трубы составляет 1-1,5 мм.

Предлагаемое устройство - оребренная труба пучка теплообменных труб аппарата воздушного охлаждения газа двухсекционного с б вентиляторами работает следующим образом. При подаче охлаждающего теплоносителя (воздуха) температурой 27°С на пучок оребренных теплообменных труб каждой секции, по которым транспортируют охлаждаемый природный газ на входе в АВО с давлением 8,35 МПа и входной после компримирования температурой 60°С, происходит обтекание пучка труб воздухом и контактный теплообмен с охлаждением газа на выходе до 40°С при потерях давления по газу менее 0,03 МПа. При этом за счет оптимизации параметров оребренных труб пучка повышающих их теплоаэродинамические характеристики и улучшающих аэродинамические условия обтекания пучка охлаждающим теплоносителем,

увеличивается суммарная площадь теплообменной поверхности за счет оптимизации оребрения труб в пучке.

Предлагаемая полезная модель за счет оптимизации параметров оребренных труб пучка позволит повысить их теплоаэродинамические характеристики и улучшить условия обтекания трубного пучка рабочей средой. Это обеспечит повышение тепловой эффективности аппарата при минимальной металлоемкости конструкции оребренных труб, а следовательно, экономичность всего пучка теплообменных труб АВО газа в процессе его изготовления и эксплуатации.

1. Оребренная труба пучка теплообменных труб аппарата воздушного охлаждения газа, характеризующаяся тем, что она содержит собственно тело теплообменной трубы и наружное оребрение, создающие в поперечном охлаждающем потоке внешней теплообменной среды участки аэродинамического затенения разной интенсивности в плоскости, нормальной к вектору потока внешней теплообменной среды и проходящей через центральную продольную ось трубы: полного аэродинамического затенения, соответствующего площади проекции на указанную плоскость единицы длины собственно тела трубы без учета оребрения и неполного аэродинамического затенения, соответствующего суммарной площади проекций на указанную плоскость участков оребрения единицы длины оребренной трубы, ограниченных с каждой стороны прямой, проведенной по вершинам ребер, за вычетом из нее площади полного аэродинамического затенения, создаваемого телом трубы без учета оребрения, при этом средняя по радиусу оребрения удельная площадь аэродинамического затенения на участках проекции оребрения на указанную плоскость на единицу длины трубы составляет 0,08-0,55.

2. Оребренная труба по п.1, отличающаяся тем, что отношение площадей проекций на указанную плоскость участков затенения разной интенсивности к их сумме составляет соответственно (0,30-0,80):1 и (0,21-0,79):1.

3. Оребренная труба по п.1, отличающаяся тем, что она выполнена не менее чем двуслойной из материалов с различной теплопроводностью.

4. Оребренная труба по п.3, отличающаяся тем, что по крайней мере внешний слой трубы выполнен из материала с большей теплопроводностью, чем внутренний слой.

5. Оребренная труба по п.3 или 4, отличающаяся тем, что труба выполнена биметаллической.

6. Оребренная труба по п.5, отличающаяся тем, что внешний слой трубы и ее оребрение выполнены из высокотеплопроводного металла или сплавов, преимущественно из алюминиевого сплава с коэффициентом теплопроводности не менее чем на 5% превышающим теплопроводность материала внутреннего слоя трубы, в качестве которого использована предпочтительно сталь.

7. Оребренная труба по п.5, отличающаяся тем, что внешний слой трубы и ее оребрение выполнены из меди или медьсодержащих сплавов.

8. Оребренная труба по п.5, отличающаяся тем, что внешний слой трубы и ее оребрение выполнены из высокопрочного и стойкого к агрессивным средам материала, преимущественно из титана или титансодержащих сплавов.

9. Оребренная труба по п.5, отличающаяся тем, что внешняя поверхность трубы и ее оребрение покрыты высокотеплопроводным и стойким к агрессивным средам материалом, например, слоем алюминия или меди, нанесенным анодированием, или напылением, или плакированием.

10. Оребренная труба по п.3, отличающаяся тем, что оребрение трубы выполнено в виде спирали из навитой на трубу и прикрепленной к ее корпусу ленты или в виде ребер, образованных накаткой внешнего слоя трубы.

11. Оребренная труба по п.1, отличающаяся тем, что внешний диаметр трубы до основания ребер составляет от 15 до 45 мм.

12. Оребренная труба по п.1, отличающаяся тем, что толщина стенки трубы составляет от 0,9 до 3,5 мм.

13. Оребренная труба по п.1, отличающаяся тем, что полная высота ребер трубы составляет от 0,27d до 0,85d, где d - внешний диаметр тела трубы без оребрения.

14. Оребренная труба по п.13, отличающаяся тем, что полная высота ребер трубы составляет от 5,0 до 22,0 мм.

15. Оребренная труба по п.1, отличающаяся тем, что ребра трубы выполнены толщиной по их внешнему диаметру, составляющей от 0,3 до 2,5 мм, а в зоне сопряжения с внешней поверхностью трубы - от 0,5 до 3,5 мм, причем в этой зоне ребро сопряжено с трубой по кривой, радиус которой не менее половины толщины ребра в зоне сопряжения.

16. Оребренная труба по п.1, отличающаяся тем, что она выполнена биметаллической с внешним диаметром внутренней несущей трубы, составляющим 25 мм, толщиной стенки 1,5-2,0 мм, полной высотой ребер 15-20 мм, толщиной ребра по его внешнему диаметру 0,5 мм, а в зоне сопряжения с внешней поверхностью внешнего слоя трубы - 0,8 мм, причем толщина внешнего слоя трубы составляет 1-1,5 мм.



 

Похожие патенты:

Теплообменный аппарат относится к нефтедобывающей промышленности и может найти применение при разработке нефтегазовых месторождений с трудноизвлекаемыми запасами высоковязкой нефти.
Наверх