Стенд для испытания холодильных компрессоров объемного действия

 

Стенд для испытания холодильных компрессоров объемного действия, содержащий замкнутый контур хладагента, в который включены газоохладитель, вход которого предназначен для соединения с патрубком нагнетания компрессора, газоохладитель-смеситель с двумя входами, расходомер парообразного хладагента на всасывании компрессора, выход которого предназначен для соединения с патрубком всасывания компрессора, конденсатор, вход которого соединен с замкнутым контуром хладагента между выходом газоохладителя и первым входом газоохладителя-смесителя, а выход соединен со вторым входом газоохладителя-смесителя, регулирующая и измерительная аппаратура, снабжен расходомером жидкого хладагента, вход которого соединен с выходом конденсатора, а выход предназначен для подачи хладагента в компрессор, при этом газоохладитель выполнен в виде параллельно включенных в замкнутый контур хладагента не менее двух теплообменных секций, каждая из которых выполнена с возможностью автономной регулировки производительности и отключения. 1 з.п. ф-лы, 2 ил.

Полезная модель относится к компрессорной технике и может быть использована при испытаниях холодильных компрессоров объемного действия по схеме парового кольца в соответствии с ГОСТ 28547-90.

Известны стенды для испытания холодильных компрессоров объемного действия по методу испарителя или конденсатора (см. ГОСТ 28547-90, с. 15-16).

Недостатком известных устройств является то, что стенды должны работать по полному циклу холодильной машины, следствием чего являются:

- большие расходы хладоносителя и/или охлаждающей воды конденсатора;

- высокая энергоемкость;

- высокая стоимость полноразмерного теплообменного оборудования и т.п.

Наиболее близким к предлагаемому - прототипом - является стенд для испытания холодильных компрессоров объемного действия по схеме парового кольца методом газоохладителя и непосредственного измерения расхода хладагента на всасывании компрессора, содержащий замкнутый контур хладагента, в который включены газоохладитель, вход которого предназначен для соединения с нагнетательным патрубком компрессора, газоохладитель-смеситель с двумя входами, расходомер парообразного хладагента на всасывании компрессора, выход которого предназначен для соединения с всасывающим патрубком компрессора, конденсатор, вход которого соединен с замкнутым контуром хладагента между выходом газоохладителя и первым входом газоохладителя-смесителя, а выход соединен со вторым входом газоохладителя-смесителя, регулирующая и измерительная аппаратура (см. ГОСТ 28547-90, с. 17-18).

Прототип в большой степени свободен от недостатков вышеприведенных аналогов, но его технологические возможности ограничены испытаниями холодильных компрессоров объемного действия, в которых не предусмотрена подача хладагента в компрессор для снижения температуры нагнетания. В частности, прототип не позволяет испытывать, например, компрессорные системы Danfoss с регулированием температуры нагнетания впрыском жидкого хладагента (Руководство по проектированию промышленных холодильных систем, Danfoss, 2006, с. 9, http://www.c-o-k.ru/images/library/23602.pdf).

Техническим результатом полезной модели является расширение технологических возможностей стенда для испытания холодильных компрессоров объемного действия за счет возможности испытания холодильных компрессоров объемного действия, в которых предусмотрена подача хладагента в компрессор для снижения температуры нагнетания.

Указанный технический результат достигается тем, что стенд для испытания холодильных компрессоров объемного действия, содержащий замкнутый контур хладагента, в который включены газоохладитель, вход которого предназначен для соединения с нагнетательным патрубком компрессора, газоохладитель-смеситель с двумя входами, расходомер парообразного хладагента на всасывании, выход которого предназначен для соединения с всасывающим патрубком компрессора, конденсатор, вход которого соединен с замкнутым контуром хладагента между выходом газоохладителя и первым входом газоохладителя-смесителя, а выход соединен со вторым входом газоохладителя-смесителя, регулирующая и измерительная аппаратура, снабжен расходомером жидкого хладагента, вход которого соединен с выходом конденсатора, а выход предназначен для подачи хладагента в компрессор, при этом газоохладитель выполнен в виде параллельно включенных в замкнутый контур хладагента не менее двух теплообменных секций, каждый(ая) из которых выполнена с возможностью автономной регулировки производительности и отключения.

Полезная модель поясняется чертежами:

фиг. 1 - принципиальная схема стенда;

фиг. 2 - конструкция газоохладителя.

Стенд для испытания холодильных компрессоров 1 объемного действия (фиг. 1) содержит замкнутый контур хладагента 2, в который последовательно включены газоохладитель 3, вход 4 которого предназначен для соединения с патрубком 5 нагнетания компрессора 1, газоохладитель-смеситель 6 с двумя входами 7 и 8, расходомер 9 парообразного хладагента на всасывании компрессора, выход 10 которого предназначен для соединения с патрубком 11 всасывания компрессора 1, конденсатор 12, вход 13 которого соединен с замкнутым контуром 2 хладагента между выходом 14 газоохладителя 3 и первым входом 7 газоохладителя-смесителя 6, а выход 15 соединен со вторым входом 8 газоохладителя-смесителя 6. Кроме того, стенд для испытания холодильных компрессоров 1 объемного действия снабжен расходомером 16 жидкого хладагента, вход 17 которого соединен с выходом 15 конденсатора 12, а выход 18 предназначен для подачи хладагента в компрессор 1. Стенд так же содержит регулирующую/запорную аппаратуру 19 (вентили, задвижки, клапаны и т.п.) и, помимо расходомера 9 парообразного хладагента на всасывании компрессора и расходомера 16 жидкого хладагента, контрольно-измерительную аппаратуру 20 (манометры, термометры и т.п.). Газоохладитель 3 (фиг. 2) выполнен в виде параллельно включенных в замкнутый контур хладагента 2 не менее двух теплообменных секций 21, выполненных, например, по принципу «труба в трубе». Во внутреннюю трубу 22 (в частном исполнении - с наружным оребрением) подается вода. В кольцевом межтрубном зазоре 23 проходит газообразный хладагент. Требуемая/расчетная производительность газоохладителя 3 достигается регулировкой каждой теплообменной секции 21 как по воде, так и по газообразному хладагенту (в зависимости от параметров испытуемого компрессора) посредством регулирующей/запорной аппаратуры 19. Наличие в газоохладителе 3 не менее двух теплообменных секций 21 обусловлено следующим обстоятельством. Поскольку заявленный стенд предназначен, в том числе, для испытания холодильных компрессоров объемного действия, в которых предусмотрена подача хладагента в компрессор для снижения температуры нагнетания, диапазон производительности испытуемых компрессоров существенно возрастает по сравнению с прототипом. Множественность теплообменных секций 21, каждая из которых выполнена с возможностью автономной регулировки производительности и отключения, при их параллельном включении в контур 2 хладагента позволяет охватить весь диапазон производительности испытуемых компрессоров без снижения точности настроек и измерений.

Стенд для испытания холодильных компрессоров объемного действия работает следующим образом.

Испытуемый компрессор 1 (например гибкими шлангами - не показаны), подсоединяется к стенду следующим образом:

- от патрубка 11 всасывания - к выходу 10 расходомера 9 парообразного хладагента на всасывании;

- от патрубка 5 нагнетания - к входу 4 газоохладителя 3;

- от патрубка 24 подачи хладагента в компрессор - к выходу 18 расходомера 16 жидкого хладагента.

Затем:

- открываются вентили регулирующей/запорной аппаратуры 19, через которые подается вода к теплообменным секциям 21 газоохладителя 3, конденсатору 12 и маслоохладителю (при наличии, на фиг. не показан) компрессора 1;

- открываются вентили регулирующей/запорной аппаратуры 19 на всасывании и нагнетании компрессора 1;

- открываются вентили регулирующей/запорной аппаратуры 19 по пару хладагента теплообменных секций 21 газоохладителя 3;

- включается двигатель компрессора 1;

- по показаниям контрольно-измерительной аппаратуры 20 (манометры, термометры и т.п.) с помощью регулирующей/запорной аппаратуры 19 устанавливается заданный режим работы компрессора 1:

- давление на нагнетании компрессора, соответствующее температуре конденсации;

- давление на всасывании компрессора, соответствующее температуре насыщенного пара;

- температура хладагента на всасывании компрессора;

- температура на нагнетании компрессора;

- температура масла (при наличии), подаваемого в компрессор 1.

Давление на нагнетании компрессора 1 предварительно устанавливается таким образом, чтобы падение давления пара хладона на газоохладителе 3 не превышало 1,5 бар.

Более точная установка давления нагнетания компрессора 1 обеспечивается изменением количества парообразного хладона, циркулирующего в стенде, посредством регулирующей/запорной аппаратуры 19, открывающей поступление пара хладагента в конденсатор 12 и подачу жидкого хладагента в патрубок 24 подачи жидкого хладагента в компрессор.

После установки давления нагнетания давление всасывания устанавливается аналогичным образом. При этом температура на всасывании компрессора 1 регулируется подачей жидкого хладагента в газоохладитель-смеситель 6 на вход 8 для сбива перегрева до нужного значения температуры всасывания.

Если в схеме компрессорного агрегата не предусмотрен маслоохладитель, то температура хладагента на нагнетании компрессора так же поддерживается на заданном уровне посредством подачи жидкого хладагента в патрубок 24 компрессора 1.

Расход воды через газоохладитель 3 устанавливается таким, чтобы температура пара хладагента на выходе 14 из газоохладителя 3 была на 5-10°С выше температуры насыщенного пара хладагента, определяемой по показаниям контрольно-измерительной аппаратуры 20 по давлению на выходе из газоохладителя 3.

Испытания и расчеты показали, что заявленный стенд для испытания холодильных компрессоров объемного действия обеспечивает:

- определение массового расхода хладона из теплового баланса газоохладителя (метод теплообменника на паровом кольце);

- прямое измерение массового расхода хладона на всасывании компрессора (метод расходомера пара на всасывании);

- измерение потребляемой электрической мощности компрессора;

- испытание холодильных компрессоров объемного действия и компрессорных агрегатов производительностью от 30 до 830 м3/ч по всасыванию;

- впрыск хладагента в компрессор для поддержания заданной температуры нагнетания;

- измерение расхода жидкого хладона для поддержания заданной температуры нагнетания.

Испытания и расчеты показали, что погрешность измерения на заявленном стенде всех необходимых параметров (давление хладагента, температура воды и хладагента, расход воды и хладагента) полностью соответствует требованиям ГОСТ 28547-90.

С учетом изложенного можно сделать вывод о том, что заявленный технический результат - расширение технологических возможностей стенда для испытания холодильных компрессоров объемного действия за счет возможности испытания холодильных компрессоров объемного действия, в которых предусмотрена подача хладагента в компрессор для снижения температуры нагнетания - достигнут.

1. Стенд для испытания холодильных компрессоров объемного действия, содержащий замкнутый контур хладагента, в который включены газоохладитель, вход которого предназначен для соединения с патрубком нагнетания компрессора, газоохладитель-смеситель с двумя входами, расходомер парообразного хладагента на всасывании компрессора, выход которого предназначен для соединения с патрубком всасывания компрессора, конденсатор, вход которого соединен с замкнутым контуром хладагента между выходом газоохладителя и первым входом газоохладителя-смесителя, а выход соединен со вторым входом газоохладителя-смесителя, регулирующая и измерительная аппаратура, отличающийся тем, что он снабжен расходомером жидкого хладагента, вход которого соединен с выходом конденсатора, а выход предназначен для подачи хладагента в компрессор.

2. Стенд для испытания холодильных компрессоров объемного действия по п.1, отличающийся тем, что газоохладитель выполнен в виде параллельно включенных в замкнутый контур хладагента не менее двух теплообменных секций, каждая из которых выполнена с возможностью автономной регулировки производительности и отключения.



 

Похожие патенты:

Изобретение относится к сервисному обслуживанию двигателей и может быть использовано в ремонте и эксплуатации дизельной топливной аппаратуры

Полезная модель относится к компрессорной технике, а именно к винтовым компрессорам и может быть использована в расширительных машинах
Наверх