Устройство для измерения напряжения в высоковольтной цепи с дистанционной передачей информации

 

Полезная модель относится к измерительной технике, в частности к цифровым приборам измерения переменного и постоянного напряжения, преимущественно в электроэнергетических сетях 6(10) кВ и выше. Задача полезной модели - повышение надежности и точности измерений за счет исключения зависимости параметров от состояния окружающей среды, уменьшение габаритов и стоимости устройства, в том числе его монтажа и наладки, а также повышение удобства и гибкости решений по компоновки оборудования при возведении, реконструкции и реновации распределительных устройств (РУ) на электроэнергетических объектов (ЭО). Технический результат достигается тем, что в устройство для измерения напряжения в высоковольтной цепи с дистанционной передачей информации, содержащее датчик напряжения, источник питания и внешнее устройство, согласно предлагаемой полезной модели, дополнительно введены последовательно соединенные микроконтроллер связи, содержащий аналогово-цифровой преобразователь, аппаратура связи и канал связи, посредством которых производится передача на внешнее устройство информации о величине измеряемого напряжения, при этом датчик напряжения подключен к микроконтроллеру связи и выполнен в виде датчика напряженности электрического поля, подключенного к токопроводу, на котором производится измерение, с возможностью преобразования напряженности электрического поля в электрический сигнал, параметры которого пропорциональны измеряемой величине, а источник питания, имеющий вторичные цепи, выполнен в виде питающего шунта, подключенного к токопроводу, на котором производится измерение, с возможностью получения постоянного напряжения с использованием части тока, протекающего по токопроводу, при этом питающий шунт через вторичные цепи подключен к микроконтроллеру связи, причем микроконтроллер связи соединен, посредством аппаратуры связи и канала связи, с внешним устройством, и выполнен с возможностью «бесшовного» интегрирования устройства для измерения напряжения в автоматизированную систему управления, учета и контроля электроэнергии объекта энергетики, а само устройство для измерения напряжения находится снаружи токопровода под потенциалом высокого напряжения и размещено внутри экранирующего герметичного кожуха в зоне отсутствия магнитных и электрических полей, за исключением датчика напряженности электрического поля, который размещен внутри герметичного кожуха. При этом датчик напряженности электрического поля выполнен в виде пьезоэлектрического элемента, измеряющего свои электрические характеристики под действием внешнего электрического поля, например, в виде вариконда. При этом датчик напряженности электрического поля выполнен в виде полупроводникового устройства изменяющего свои электрические характеристики под действием внешнего электрического поля, например, в виде варистора. При этом вторичные цепи содержат резервный питающий конденсатор и/или аккумулятор, а также зарядное устройство аккумулятора. При этом канал связи выполнен в виде атмосферной оптической линии связи или волоконно-оптической линии связи или радиоканала. При этом в качестве датчика напряжения использована система датчиков напряженности электрического поля, подключенных к токопроводу, на котором производится измерение, с возможностью преобразования напряженности электрического поля в электрический сигнал, параметры которого пропорциональны измеряемой величине, и расположенных по разные стороны от токопровода. 5 з.п. ф-лы, 1 ил.

Полезная модель относится к измерительной технике, в частности к цифровым приборам измерения переменного и постоянного напряжения, преимущественно в электроэнергетических сетях 6(10) кВ и выше.

Наиболее близким техническим решением является устройство, реализующее способ измерения переменного электрического тока и напряжения по патенту РФ 2222021, МПК G01R 15/24, G01R 19/00, 20.01.2004, в котором поляризованный световой сигнал пропускают, по меньшей мере, один раз через датчик, изменяющий поляризацию светового сигнала в зависимости от измеряемой величины, прошедший через датчик световой сигнал делят на пару взаимно ортогональных линейно-поляризованных составляющих. Дополнительно осуществляют деление светового сигнала на вторую пару взаимно ортогональных линейно-поляризованных составляющих, отличающуюся от первой угловой ориентацией или фазовым сдвигом, все составляющие преобразуют в нормированные по интенсивности электрические сигналы I1, I2 и I3 , I4 соответственно, а измерительный сигнал М формируют из них с учетом угла ориентации или фазового сдвига между парами. Устройство для измерения переменного электрического тока или напряжения включает оптически связанные датчик, изменяющий поляризацию светового сигнала в зависимости от измеряемой величины, средство ввода в датчик поляризованного светового сигнала, средство деления поляризованного светового сигнала на взаимно ортогональные линейно-поляризованные составляющие, а также узел преобразования составляющих в нормированные по интенсивности электрические сигналы и блок формирования измерительного сигнала для измеряемой величины и определения по нему измеряемой величины.

Известное устройство имеет следующие недостатки:

- низкая надежность измерения из-за сильной зависимости параметров от состояния окружающей среды (прежде всего от температуры), обусловленной необходимостью использования датчика, изменяющего поляризацию светового сигнала в зависимости от измеряемой величины, которым, в случае измерения напряжения, является ячейка Керра, а также высокая стоимость из-за использования эффективных для измерения материалов;

- низкая точность измерений, обусловленная высокой погрешностью измерения из-за использования элементов, осуществляющих деление светового сигнала на пары взаимно ортогональных линейно-поляризованных составляющих, увеличивающих количество этапов преобразований необходимых для измерения;

- высокая стоимость и габариты из-за существования гальванической связи между измерительной частью и индикатором (устройством сопряжения с объектом), находящимся под потенциалом низкого напряжения (земли), что обуславливает необходимость размещения устройства на громоздкой и, как правило, дорогой изоляционной конструкции, рассчитанной на класс напряжения сети;

- невозможность «бесшовной» интеграции устройства в автоматизированную систему управления, учета и контроля на объекте энергетики, в которую входят автоматизированные системы управления в электроэнергетике (АСУЭ), автоматизированные системы коммерческого учета электроэнергии и мощности (АСКУЭ), «интеллектуальные сети» («smart grid») из-за отсутствия соответствующих компонентов и блоков.

Задача полезной модели - повышение надежности и точности измерений за счет исключения зависимости параметров от состояния окружающей среды, уменьшение габаритов и стоимости устройства, в том числе его монтажа и наладки, а также повышение удобства и гибкости решений по компоновке оборудования при возведении, реконструкции и реновации распределительных устройств (РУ) на электроэнергетических объектах (ЭО).

Технический результат достигается тем, что в устройство для измерения напряжения в высоковольтной цепи с дистанционной передачей информации, содержащее датчик напряжения, источник питания и внешнее устройство, согласно предлагаемой полезной модели, дополнительно введены последовательно соединенные микроконтроллер связи, содержащий аналогово-цифровой преобразователь, аппаратура связи и канал связи, посредством которых производится передача на внешнее устройство информации о величине измеряемого напряжения, при этом датчик напряжения подключен к микроконтроллеру связи и выполнен в виде датчика напряженности электрического поля, подключенного к токопроводу, на котором производится измерение, с возможностью преобразования напряженности электрического поля в электрический сигнал, параметры которого пропорциональны измеряемой величине, а источник питания, имеющий вторичные цепи, выполнен в виде питающего шунта, подключенного к токопроводу, на котором производится измерение, с возможностью получения постоянного напряжения с использованием части тока, протекающего по токопроводу, при этом питающий шунт через вторичные цепи подключен к микроконтроллеру связи, причем микроконтроллер связи соединен, посредством аппаратуры связи и канала связи, с внешним устройством, и выполнен с возможностью «бесшовного» интегрирования устройства для измерения напряжения в автоматизированную систему управления, учета и контроля электроэнергии объекта энергетики, а само устройство для измерения напряжения находится снаружи токопровода под потенциалом высокого напряжения и размещено внутри экранирующего герметичного кожуха в зоне отсутствия магнитных и электрических полей, за исключением датчика напряженности электрического поля, который размещен внутри герметичного кожуха.

При этом датчик напряженности электрического поля выполнен в виде пьезоэлектрического элемента, изменяющего свои электрические характеристики под действием внешнего электрического поля, например, в виде вариконда.

При этом датчик напряженности электрического поля выполнен в виде полупроводникового устройства изменяющего свои электрические характеристики под действием внешнего электрического поля, например, в виде варистора.

При этом вторичные цепи содержат резервный питающий конденсатор и/или аккумулятор, а также зарядное устройство аккумулятора.

При этом канал связи выполнен в виде атмосферной оптической линии связи или волоконно-оптической линии связи или радиоканала.

При этом в качестве датчика напряжения использована система датчиков напряженности электрического поля, подключенных к токопроводу, на котором производится измерение, с возможностью преобразования напряженности электрического поля в электрический сигнал, параметры которого пропорциональны измеряемой величине, и расположенных по разные стороны от токопровода.

Таким образом, в предлагаемом устройстве для измерения напряжения в высоковольтной цепи с дистанционной передачей информации используется датчик напряжения, основным элементом которого является датчик напряженности электрического поля. В качестве примера, таким датчиком может быть пьезоэлектрический датчик (например, вариконд), полупроводниковый датчик (например, варистор) и другие элементы, основным свойством которых является изменение своих электрических параметров (например, электрической емкости или электрического сопротивления) под воздействием внешнего электрического поля.

Датчик напряженности электрического поля преобразует напряженность электрического поля в окрестностях токопровода Е, пропорциональную фазному напряжению на токопроводе Uф, в электрический сигнал, параметры которого пропорциональны измеряемой величине - фазному напряжению на токоведущих частях ЭУ.

Для уменьшения влияния помех от токопроводов соседних фаз в датчике напряжения устройства может быть использована система датчиков напряженности электрического поля, расположенных в окрестностях токопровода с измеряемым фазным напряжением U ф по разные стороны от токопровода.

Источник питания, имеющий вторичные цепи, выполнен в виде источника постоянного напряжения, получаемого с использованием части тока, протекающего по токоведущим частям электроэнергетической установки (ЭУ), с помощью подключенного в токопровод питающего шунта.

Для повышения надежности работы устройства, вторичная цепь содержит резервирующий конденсатор, питающий электронную аппаратуру устройства в случаях кратковременных отсутствий тока от питающего шунта при возникновении ненормальных и аварийных режимов работы в силовой электрической сети.

В качестве блока формирования измерительного сигнала для измеряемой величины и определения по нему измеряемой величины в устройство введен микроконтроллер связи со встроенным аналогово-цифровым преобразователем, обеспечивающим оцифровку аналогового сигнала от датчика напряжения, дополнительную обработку оцифрованного сигнала, и формирование сигналов телеизмерения (ТИ) на внешнее устройство (индикатор или устройство сопряжения с объектом (УСО)), находящимся под потенциалом низкого напряжения (земли). Микроконтроллер связи совместно с аппаратурой связи осуществляет сбор, преобразование, обработку, хранение и передачу полученной информации о величине измеряемого напряжения по каналу связи. Передача сигналов ТИ на внешнее устройство (индикатор или УСО), находящимся под потенциалом земли осуществляется с помощью электромагнитных волн, как радио-, так и оптического диапазона спектра, в последнем случае передача оптического сигнала осуществляется по атмосферному оптическому каналу связи или по волоконно-оптической линии связи.

Сущность полезной модели поясняется чертежом, на котором изображена принципиальная структурная схема предлагаемого устройства для измерения напряжения в высоковольтной цепи с дистанционной передачей информации.

Цифрами на чертеже обозначены:

1 - датчик напряженности электрического поля;

2 - токопровод, на котором производится измерение (токоведущие части электроэнергетической установки - ЭУ);

3 - датчик напряжения;

4 - источник питания (источник постоянного напряжения);

5 - микроконтроллер связи, содержащий аналогово-цифровой преобразователь (блок формирования измерительного сигнала для измеряемой величины и определения по нему измеряемой величины);

6 - питающий шунт, подключенный к токопроводу;

7 - катушка индуктивности (фильтр низких частот);

8 - вторичные цепи питающего шунта,

9 - аппаратура связи;

10 - экранирующий герметичный кожух;

11 - канал связи (атмосферная оптическая линия связи или волоконно-оптическая линия связи или радиоканал);

12 - внешнее устройство (индикатор или УСО автоматизированной системы управления, учета и контроля на объекте энергетики).

13 - герметичный кожух датчика напряженности электрического поля.

Устройство для измерения напряжения в высоковольтной цепи с дистанционной передачей информации содержит датчик 3 напряжения, источник 4 питания и внешнее устройство 12.

Отличием устройства является то, что в него дополнительно введены последовательно соединенные микроконтроллер 5 связи, содержащий аналогово-цифровой преобразователь, аппаратура 9 связи и канал 11 связи, посредством которых производится передача на внешнее устройство 12 информации о величине измеряемого напряжения.

Основным элементом датчика напряжения является датчик 1 напряженности электрического поля.

Датчик 1 напряженности электрического поля может быть выполнен в виде пьезоэлектрического элемента, изменяющего свои электрические характеристики под действием внешнего электрического поля, например, в виде вариконда.

Датчик 1 напряженности электрического поля может быть выполнен также в виде полупроводникового устройства изменяющего свои электрические характеристики под действием внешнего электрического поля, например, в виде варистора.

Датчик 1 напряженности электрического поля подключен к токопроводу 2, на котором производится измерение, и выполнен с возможностью формирования электрического сигнала, интенсивность которого пропорциональна измеряемой величине (Uф).

Датчик 3 напряжения подключен к микроконтроллеру 5 связи, и, через включенный в его состав датчик 1 напряженности электрического поля, выполнен с возможностью преобразования напряженности электрического поля в окрестностях токопровода в электрический сигнал, параметры которого пропорциональны измеряемой величине.

Источник 4 питания, имеющий вторичные цепи, выполнен в виде питающего шунта 6, подключенного к токопроводу 2, на котором производится измерение, с возможностью получения постоянного напряжения с использованием части тока, протекающего по токопроводу 2.

Для защиты цепей измерения и источника 4 питания от разрушительных процессов, возникающих при внешних или внутренних перенапряжениях в токоведущих частях, к питающему шунту 6 последовательно подключена катушка индуктивности 7, являющаяся фильтром низких частот, что ограничивает высокочастотные помехи и всплески токов, которые могут протекать через питающий шунт 6 при ненормальных и аварийных режимах сети.

Питающий шунт 6 через вторичные цепи 8 подключен к микроконтроллеру 5 связи. Вторичные цепи 8 содержат резервный питающий конденсатор и/или аккумулятор, а также зарядное устройство аккумулятора.

Микроконтроллер 5 связи соединен посредством аппаратуры 9 связи и канала 11 связи с внешним устройством 12 (индикатором или УСО автоматизированной системы управления, учета и контроля на объекте энергетики). Микроконтроллер 5 связи выполнен с возможностью «бесшовного» интегрирования устройства для измерения напряжения в автоматизированную систему управления, учета и контроля электроэнергии объекта энергетики.

Канал 11 связи выполнен в виде атмосферной оптической линии связи или волоконно-оптической лини и связи или радиоканала.

Само устройство для измерения напряжения находится снаружи токопровода 2 под потенциалом высокого напряжения и размещено внутри экранирующего, герметичного кожуха 10 в зоне отсутствия магнитных и электрических полей, за исключением датчика 1 напряженности электрического поля, который размещен внутри герметичного кожуха 13.

В качестве датчика 3 напряжения может быть использована система датчиков 1 напряженности электрического поля (на чертеже условно не показана), подключенных к токопроводу 2, на котором производится измерение, с возможностью преобразования напряженности электрического поля в электрический сигнал, параметры которого пропорциональны измеряемой величине, и расположенных по разные стороны от токопровода 2.

Устройство для измерения напряжения в высоковольтной цепи с дистанционной передачей информации работает следующим образом.

При подаче напряжения на токоведущие части ЭУ, в окрестностях токопровода 2 возникает, быстрозатухающее с расстоянием, электрическое поле, напряженностью Е. Известно, что напряженность Е электрического поля в окрестностях токопровода (например, провода воздушной линии электропередачи) пропорциональна напряжению на токопроводе, геометрическим размерам токопровода, а также параметрам самого устройства измерения. Следовательно, при подключении к токопроводу 2 датчика 1 напряженности электрического поля (или системы датчиков 1 напряженности электрического поля), изменяющего свои электрические параметры (например, значение емкости или сопротивления) под действием напряженности Е электрического поля, можно производить измерение фазного напряжения на ЭУ.

Одним из наиболее простых вариантов реализации датчика 1 напряженности электрического поля является вариконд. При размещении в окрестностях токоведущих частей ЭУ вариконда, диэлектрическая проницаемость сегнегоэлектрика, выполняющего роль изолятора в варикондах меняется (с увеличением напряженности электрического поля - диэлектрическая проницаемость растет), что приводит к изменению емкости вариконда. Измеряя емкость вариконда можно рассчитать модуль |Е|, а следовательно и напряжение на токопроводе |Uф|.

В качестве наиболее простого варианта датчика 3 напряжения может быть использована электронная схема гармонических колебаний (генератор гармонических колебаний), в цепь обратной связи, которой подключается вариконд или несколько варикондов. Изменение емкости варикондов под действием напряженности электрического поля в окрестности токопровода 2 будет приводить к изменению частоты гармонического сигнала, вырабатываемого генератором. Измеряя частоту можно рассчитать значение модуля |Е|, и, зная геометрические параметры токопровода и характеристики устройства, определить|Uф|.

Микроконтроллер 5 связи, содержащий аналогово-цифровой преобразователь, оцифровывает сигнал, полученный с датчика 3 напряжения 3, производит дополнительную обработку сигнала от датчика 3 напряжения, и передачу соответствующего цифрового кода на аппаратуру 10 связи.

Аппаратура 9 связи из полученных от микроконтроллера 5 связи цифровых сигналов формирует согласно заложенным протоколам связи информационные сообщения - сигналы телеизмерения (ТИ) - и отсылает их на внешнее устройство 12 (индикатор или УСО автоматизированной системы управления, учета и контроля на объекте энергетики). Помимо беспроводных каналов 11 (и соответственно протоколов) связи, аппаратура 9 связи может передавать информацию по волоконно-оптической линии связи.

Питание схем устройства для измерения напряжения осуществляется источником питания, основным элементом: которого является питающий шунт 6, подключенный к токопроводу 2. Питающее напряжение с питающего шунта 6 подается на вторичные цепи 8 (на фильтрующий элемент, который содержит полупроводниковый выпрямитель переменного напряжения, стабилизирующий элемент, а также фильтр низких частот, которые на чертеже условно не показаны).

Для увеличения надежности работы устройства в случае кратковременных пауз в питании от питающего шунта 6, возникающих при прохождении процессов в токопроводе 2, обусловленных короткими замыканиями, вторичные цепи 8 содержат резервирующий конденсатор, питающий электронную аппаратуру устройства в таких режимах работы. Для обеспечения надежности работы устройства в режиме холостого хода или при полном отсутствии тока в токопроводящих частях ЭУ (когда токопровод 2 отключен полностью) вторичные цепи 8 содержат аккумуляторную батарею и зарядное устройство аккумулятора.

Устройство для измерения напряжения находится снаружи токопровода 2 под потенциалом высокого напряжения и размещено (за исключением датчика 1 напряженности электрического поля или системы датчиков I напряженности электрического поля) внутри экранирующего герметичного кожуха 10 в зоне отсутствия магнитных и электрических полей, что позволяет отстроиться от электромагнитных полей (шумов) и защитить электронную аппаратуру устройства от коммутационных или грозовых перенапряжений. Датчик 1 напряженности электрического поля (или система датчиков 1 напряженности электрического поля) размещен внутри герметичного кожуха 13, обеспечивающего необходимую защиту датчика от неблагоприятных воздействий окружающей среды.

Техническими результатами, обеспечиваемыми при использовании предлагаемой полезной модели, по сравнению с устройством-прототипом, являются:

1. Повышение надежности и работоспособности устройства при воздействии коммутационных и атмосферных перенапряжений в токоведущих частях ЭУ, а также помех, наведенных токами короткого замыкания.

2. Полное исключение гальванической связи между токоведущими частями ЭУ, находящимся под потенциалом высокого напряжения, и внешним устройством (индикатором или УСО), находящимся под потенциалом низкого напряжения (земли).

3. Повышение удобства и гибкости решений по компоновке устройства на вновь вводимых или реконструируемых РУ ЭУ.

4. Обеспечение простой и удобной «бесшовной» интеграции устройства, в автоматизированную систему управления, учета и контроля на объекте энергетики, в которую входят автоматизированные системы управления в электроэнергетике (АСУЭ), автоматизированные системы коммерческого учета электроэнергии и мощности (АСКУЭ), «интеллектуальные сети» («smart grid»).

5. Применение устройства без существенных конструктивных изменений в РУ различных классов напряжения.

6. Уменьшение массогабаритных параметров и стоимости устройства.

1. Устройство для измерения напряжения в высоковольтной цепи с дистанционной передачей информации, содержащее датчик напряжения, источник питания и внешнее устройство, отличающееся тем, что в него дополнительно введены последовательно соединенные микроконтроллер связи, содержащий аналогово-цифровой преобразователь, аппаратура связи и канал связи, посредством которых производится передача на внешнее устройство информации о величине измеряемого напряжения, при этом датчик напряжения подключен к микроконтроллеру связи и выполнен в виде датчика напряженности, осуществляющего преобразование напряженности электрического поля в окрестностях токопровода в электрический сигнал, параметры которого пропорциональны измеряемой величине, а источник питания, имеющий вторичные цепи, выполнен в виде питающего шунта, подключенного к токопроводу, на котором производится измерение с возможностью получения постоянного напряжения с использованием части тока, протекающего по токопроводу, при этом питающий шунт через вторичные цепи подключен к микроконтроллеру связи, причем микроконтроллер связи соединен посредством аппаратуры связи и канала связи с внешним устройством и выполнен с возможностью «бесшовного» интегрирования устройства для измерения напряжения в автоматизированную систему управления, учета и контроля электроэнергии объекта энергетики, а само устройство для измерения напряжения находится снаружи токопровода под потенциалом высокого напряжения и размещено внутри экранирующего герметичного кожуха в зоне отсутствия магнитных и электрических полей, за исключением датчика напряженности электрического поля, который размещен внутри герметичного кожуха.

2. Устройство для измерения напряжения в высоковольтной цепи с дистанционной передачей информации по п.1, отличающееся тем, что датчик напряженности электрического поля выполнен в виде пьезоэлектрического элемента, изменяющего свои электрические характеристики под действием внешнего электрического поля, например в виде вариконда.

3. Устройство для измерения напряжения в высоковольтной цепи с дистанционной передачей информации по п.1, отличающееся тем, что датчик напряженности электрического ноля выполнен в виде полупроводникового устройства, изменяющего свои электрические характеристики под действием внешнего электрического поля, например в виде варистора.

4. Устройство для измерения напряжения в высоковольтной цепи с дистанционной передачей информации по п.1, отличающееся тем, что вторичные цепи содержат резервный питающий конденсатор и/или аккумулятор, а также зарядное устройство аккумулятора.

5. Устройство для измерения напряжения в высоковольтной цепи с дистанционной передачей информации по п.1, отличающееся тем, что канал связи выполнен в виде атмосферной оптической линии связи, или волоконно-оптической линии связи, или радиоканала.

6. Устройство для измерения напряжения в высоковольтной цепи с дистанционной передачей информации по п.1, отличающееся тем, что в качестве датчика напряжения использована система датчиков напряженности электрического поля, установленных в окрестностях токопровода, на котором производится измерение, с возможностью преобразования напряженности электрического поля в электрический сигнал, параметры которого пропорциональны измеряемой величине, и расположенных по разные стороны от токопровода.



 

Похожие патенты:

Полезная модель относится к электротехнике и предназначена для заряда электрохимических накопителей энергии, а именно аккумуляторных батарей

Техническим результатом исследования ПМ является увеличение срока службы металлокерамических и цельнолитых конструкций, улучшение качества жизни пациента, за счет обеспечения надежной фиксации протезов, благодаря обоснованному подбору фиксирующего материала

Полезная модель относится к электронно-вычислительной аппаратуре мобильного рабочего места и может быть использована сотрудниками организаций, эксплуатирующих сложную инфраструктуру, для проведения работ по осмотру и обслуживанию производственных активов, в том числе в сложных и экстремальных климатических условиях

Изобретение относится к области сельского хозяйства и декоративного растениеводства, может быть использовано для внутрипочвенного полива и питания растений, выращиваемых в открытом и в закрытом грунте, и в контейнерных культурах

Прибор для измерения температуры поверхности относится к области электротехники, в частности, к средствам контроля недопустимых превышений температуры контактных соединений токоведущих частей в высоковольтных устройствах.
Наверх