Устройство индукционного каротажа скважин в процессе бурения

 

Полезная модель относится к области геофизических исследований скважин в процессе бурения, и может быть использована для определения удельного электрического сопротивления (УЭС) пластов, окружающих скважину.

Полезная модель решает задачу уменьшения габаритов и упрощения конструкции, повышения надежности.

В устройстве индукционного каротажа скважин в процессе бурения (зонд), содержащем генераторные и измерительные катушки, смонтированные на немагнитной металлической трубе, покрытой слоем диэлектрического материала, встроенной в колонну бурильных труб, электронный блок, немагнитная металлическая труба выполнена с радиально направленными ребрами жесткости, расположенными между генераторными и измерительными катушками и по концам зонда, при этом высота ребер жесткости меньше толщины слоя диэлектрического материала.

Полезная модель относится к области геофизических исследований скважин в процессе бурения и может быть использована для определения удельного электрического сопротивления (УЭС) пластов, окружающих скважину.

В процессе бурения скважины информация об УЭС может использоваться для целей геонавигации, что особенно важно при проводке скважин в тонких пластах, когда дополнительная информация позволяет исключить подход ствола скважины к водонефтяному контакту (ВНК) или глинистой покрышке.

Известен прибор электромагнитного каротажа в процессе бурения, встраиваемый в колонну бурильных труб и содержащий генераторные катушки и электронные узлы. Конструкция прибора выполнена из двух коаксиально расположенных композитных радиопрозрачных труб (патент РФ 2231091, G01V 3/28, опубл. 20.06.2004 г.).

Недостатком данной конструкции является то, что композитный материал по прочности, износостойкости к истиранию значительно уступает стали и многим другим металлам, что уменьшает срок службы и не позволяет выполнить приборы малого диаметра, используемые при бурении боковых стволов.

На основе патента 2231091 реализована аппаратура электромагнитного каротажа ВИКПБ-7 (Прибор высокочастотного электромагнитного каротажного зондирования в процессе бурения ВИКПБ-7. /Новые технологии, технические и программные средства геофизических исследований и работ в нефтяных и газовых скважинах // Сводный каталог ГИРС. Том 1 Аппаратура для проведения ГИС, 2007 г., стр. А1.1.11.6).

Аппаратура ВИКПБ-7 включает в себя сеть разноглубинных зондов электромагнитного каротажа с радиусом исследования 0,2-1,2 м. Общая длина прибора 5,5 м.

Недостатком данной аппаратуры являются: малая глубина исследований - 1,2 м при значительной длине прибора, а также использование стеклопластиковых труб.

Фирмой Geolink разработан прибор индукционного каротажа TRIM в процессе бурения на частоте 20 кГц (www.geolink.co.uk). Глубинность исследований: при УЭС=1 Ом-м - 2.13 м, при УЭС=10 Ом·м - 2,845 м, а при УЭС=100 Ом·м - 3,09 м при длине прибора более 3 м.

Зонды индукционного каротажа TRIM вмонтированы в контейнер с продольным внешним пазом на бурильной трубе из бериллиевой бронзы. Такое размещение зонда не позволяет выполнить индукционные катушки большого диаметра, которые ограничиваются размерами внешнего паза и осевым проходным отверстием для бурового раствора.

Малые размеры катушки значительно снижают чувствительность измерений, так как магнитное поле, излучаемое генераторной катушкой, и амплитуда сигнала в приемных катушках, пропорциональны их площади. Несущая металлическая труба представляет собой короткозамкнутый виток и вносит искажение в сигнал. Электропроводность металла зависит от температуры и в процессе каротажа будет изменяться, что приводит к погрешностям в определении УЭС пород.

Известен прибор электромагнитного каротажа скважин в процессе бурения фирмы Computalog Drilling Services, USA (Конструкция, характеристика и результаты промысловых испытаний нового многочастотного прибора для каротажа удельного электрического сопротивления (УЭС) в процессе бурения в малогабаритной скважине. = The Design, Response, and Field Test Results of a New Slim Hole LWD Tool Multiple Frequency Resistivity Propagation Tool. / S.G.Mack, M.Wisler, J.Q.Wu // Computalog Drilling Services. SPE 77483. Society of petroleum engineers. 2002. -p.1-11).

Генераторная и измерительная катушки намотаны на муфту из немагнитного металлического сплава. Выбрана симметричная конструкция зондовой установки, чтобы уменьшить влияние скважинного давления температуры в процессе бурения, что увеличило длину зондовой части в два раза. Три независимые пары излучатель-приемник и две рабочие частоты оптимизировали величину измерений по широкому диапазону каротажных условий.

Длина зондов 508, 762, 1168, минимальный диаметр прибора 120,65 мм. Общая длина прибора равна 5,250 м.

УЭС вычисляется по разности фаз и отношений амплитуд. Максимальная глубинность при измерении разности фаз на частоте 400 КГ при УЭС=2 Ом·м - 1,6 м, при 20 Ом·м - 2,430 м, при 200 Ом·м - 3,20 м. При этом на частоте 400 КГц погрешность определения УЭС выше из-за большого влияния бурильной колонны. Максимальная глубинность на частоте 2 мГц - 2,692 м.

Основным недостатком данной конструкции является большая длина прибора, что может привести к запаздыванию информации о приближении к границе смежного пласта в горизонтальной скважине. Кроме того, несущая металлическая труба вносит дополнительные погрешности в измерения при изменении температуры в скважине из-за изменения удельной электропроводности металла.

Наиболее близким к заявляемому изобретению является техническое решение по патенту РФ 2377607 «Способ устранения паразитного влияния проводящих бурильных труб на результаты измерений переходных электромагнитных составляющих в процессе бурения» (заявл. 04.02.2005 г., опубл. 27.12.3009 г., G01V 3/28).

Известный способ реализуется с помощью устройства, содержащего: передатчик, установленный в компоновке низа бурильной клоны (КНБК), который используется для генерирования сигнала становления электромагнитного поля, направленного в толщу горных пород Установленный в КНБК приемник принимает сигналы, отображающие удельное сопротивление толщи горных пород и расстояние до границ пластов. Ось передатчика и приемника могут проходить параллельно или под углом к оси КНБК. Передатчик и приемник установлены на трубчатом элементе КНБК. Трубчатый элемент имеет демпфирующую часть, включающую поперченную прорезь для ослабления протекания вихревых токов в трубчатом элементе. Демпфирующая часть дополнительно имеет, по меньшей мере, одну продольную прорезь, выполненную в трубчатом элементе. В прорези может быть размещен непроводящий материал. Демпфирующая часть включает участок трубы с непроводящим материалом, размещенным на наружной поверхности этого участка таким, как феррит. Технический результат: ослабление паразитных сигналов, вызываемых вихревыми токами, без увеличения расстояния между передатчиком и приемником.

Недостаток известного технического решения заключается в следующем: с целью ослабления паразитного влияния бурильной колонны на результаты измерений на трубчатом элементе КНБК сделаны продольные и поперечные прорези, которые ослабляют буровую колонну, испытывающую значительные нагрузки при бурении. Кроме того, длина данных прорезей составляет 10-20 м для эффективного ослабления паразитных влияний, что значительно увеличивает длину зонда

Задачей полезной модели является повышение надежности конструкции и уменьшение ее размеров.

Поставленная задача решается тем, что в устройстве индукционного каротажа скважин в процессе бурения (зонд), содержащем генераторные и измерительные катушки, смонтированные на немагнитной металлической трубе, покрытой слоем диэлектрического материала, встроенной в колонну бурильных труб, электронный блок, в отличие от прототипа немагнитная металлическая труба выполнена с радиально направленными ребрами жесткости, расположенными между генераторными и измерительными катушками и по концам зонда, при этом высота ребер жесткости меньше толщины слоя диэлектрического материала.

На фиг.1 изображена схема КНБК с зондом.

На фиг.2 дана конструкция зонда.

На фиг.3 представлен разрез зонда по А-А.

На фиг.4 приведена зависимость сигнала от толщины диэлектрического слоя Н: 1 - Н=15 м, 2 - Н=10 м, 3 - Н=5 м, 4 - Н=0 м.

На фиг.1 в компоновку низа бурильной колонны (КНБК) 1 с буровым долотом 2, входит зонд 3, расположенный в непосредственной близости от долота 2, содержащий генераторные 4 и измерительные катушки 5, смонтированные на немагнитной металлической трубе 6, встроенной в КНБК, и электронный блок 7 (фиг.2). Немагнитная металлическая труба 6 по диаметру 8 выполнена с радиально направленными ребрами жесткости 9. Ребра жесткости 9 расположены между катушками 4 и 5 и по концам зонда. Ребра жесткости 9 покрыты слоем диэлектрического материала 10, образующим основу для намотки витков генераторных 4 и измерительных катушек 5 (фиг.3). При этом высота h ребер жесткости 9 меньше толщины Н слоя диэлектрического материала 10 (фиг.2). Буровое долото 2 с забойным двигателем 11, наддолотным модулем 13, зондом индукционного каротажа 3 и забойной телесистемой (ЗТС) 14 в процессе бурения спускают в скважину на колонне бурильных труб 14.

Устройство работает следующим образом.

После спуска устройства в скважину, запускают в работу электронный блок 7, который может снабжаться блоком автономного питания или получать питание от работы турбогенератора, входящим в состав ЗТС (на фиг.1 не показано). Электронный блок 7 обеспечивает импульсную подачу тока на генераторную катушку 4 длительностью 50-200 мкс, что приводит к возникновению вихревого тока в породе. Установлено, что ступенчатое изменение тока в генераторной катушке 4 в диапазоне 50-200 мкс повышает глубинность индукционного каротажа в процессе бурения.

В измерительной катушке 5 регистрируют ЭДС методом переходных процессов в диапазоне 0,1-50 мкс.

Для повышения амплитуды сигнала между генераторной и измерительной катушками располагается цилиндрический слой толщиной Н из диэлектрического материала (фиг.2).

Для увеличения прочности несущей немагнитной трубы в местах размещения генераторных и измерительных катушек и предотвращения проворачивания изоляционного диэлектрического слоя вместе с катушками относительно тела трубы, указанные катушками расположены поверх изоляционного слоя в промежутках между ребрами жесткости по телу трубы, по высоте h менее толщины Н изоляционного диэлектрического слоя. Ребра жесткости имеются также около краев крайних катушек зондового устройства.

Примером могут служить результаты измерений в однородной среде с УЭС, равной 1 Ом-м в зависимости от толщины диэлектрического материала Н (фиг.4).

Чем толще изоляционный слой, тем больше амплитуда сигнала, и как следствие, чувствительность зонда. Ограничение по толщине может быть обусловлено максимально необходимым диаметром прибора и прочностью трубы.

Устройство индукционного каротажа скважин в процессе бурения, содержащее генераторные и измерительные катушки, смонтированные на немагнитной металлической трубе, покрытой слоем диэлектрического материала, встроенной в колонну бурильных труб, электронный блок, отличающееся тем, что немагнитная металлическая труба выполнена с радиально направленными ребрами жесткости, расположенными между генераторными и измерительными катушками и по концам зонда, при этом высота ребер жесткости меньше толщины слоя диэлектрического материала.



 

Похожие патенты:

Насосно-компрессорная стальная оцинкованная металлическая труба относится к области добычи нефти и газа, в частности к конструкции труб, которые используют для добычи нефти из скважин.

Полезная модель относится к геофизическому приборостроению, в частности к средствам гамма-гамма каротажа, а именно к области метрологического обеспечения скважинной геофизической аппаратуры и созданию стандартных образцов для калибровки скважинной аппаратуры

Технический результат усиление сигнала прецессирующей ядерной намагниченности в измеряемом объекте, и, соответственно, увеличение чувствительности измерений достигается за счет эффекта динамической поляризации ядер (ДПЯ), т

Портативный кондуктометр относится к лабораторной измерительной технике и может быть использован для измерения удельной электропроводности жидкостей с использованием контактных двухэлектродных кондуктометрических ячеек в лабораториях физико-химического анализа.
Наверх