Устройство смешения двух многофазных газовых потоков

 

Данная полезная модель относится к устройствам смешения двух многофазных газовых потоков и может быть использована в химической промышленности, например, при синтезе полимерных порошков, а также в фармацевтической и пищевой отраслях промышленности.

Решаемая техническая задача полезной модели заключается в повышении степени контроля процесса смешения двух многофазных газовых потоков разноименно заряженных частиц и в обеспечении характерного времени смешения меньше характерного времени жизни возбужденных при ионизации частиц.

Решаемая техническая задача в устройстве смешения двух многофазных газовых потоков содержащем источник газа первый выход которого подсоединен к входу первого редуктора, выход первого редуктора подсоединен к первому входу первого газового тракта, ко второму входу которого подсоединен распылитель частиц первого многофазного потока, выход первого газового тракта присоединен ко входу первого ионизатора, к которому подключен первый источник питания, выход первого ионизатора соединен с первым входом камеры смешения, другой выход источника газа подсоединен к входу второго редуктора, выход которого подсоединен к первому входу второго газового тракта, ко второму входу которого подсоединен второй распылитель частиц второго многофазного потока, выход второго газового тракта подсоединен ко входу второго ионизатора, к которому подключен второй источник питания, выход второго ионизатора соединен со вторым входом камеры смешения, достигается тем, камера смешения совмещена с устройством создания магнитного поля, к которому подключен регулятор величины напряженности магнитного поля.

В предложенном устройстве смешения двух многофазных газовых потоков два газовых тракта могут быть расположены под углом друг к другу.

Данная полезная модель относится к устройствам смешения двух многофазных газовых потоков и может быть использована в химической промышленности, например, при синтезе полимерных порошков, а также в фармацевтической и пищевой отраслях промышленности.

Известно устройство [Патент на изобретение РФ 2428402 C05D 1/04, В05С 5/00, В82В 3/00 от 29.09.2009], реализующее способ диспергирования нано- или микрочастиц, их смешения с частицами полимера,, выбранное в качестве прототипа устройства, содержит два источника газа, два газовых тракта, два распылителя конгломерата нано- или микрочастиц и частиц полимера, два отдельных ионизатора для заряда нано- или микрочастиц и частиц полимера, камеру смешения, причем, выход источник газа для нано- или микрочастиц подсоединен к входу распылителя конгломерата нано- или микрочастиц, выход распылителя конгломерата нано- или микрочастиц соединен с первым входом ионизатора для заряда нано- или микрочастиц, регулятор тока заряда нано- или микрочастиц соединен со вторым входом ионизатора для заряда нано- или микрочастиц, выход источника газа для частиц полимера подсоединен к входу распылителя частиц полимера, выход распылителя частиц полимера соединен с первым входом ионизатора для заряда частиц полимера, регулятор тока заряда частиц полимера соединен со вторым входом ионизатора для заряда частиц полимера, выходы камер ионизаторов для заряда нано- или микрочастиц и частиц полимера подключены каждый к своему входу камеры смешения, камера смешения соединена с первым входом камеры закрепления нано- или микрочастиц на поверхности полимера, выход источника электромагнитного поля камеры закрепления нано- или микрочастиц на поверхности полимера соединен со вторым входом камеры закрепления, выход регулятора параметров электромагнитного поля соединен с входом источника электромагнитного поля, выход камеры закрепления нано- или микрочастиц на поверхности полимера соединен с входом камеры отделения модифицированных частиц полимера от потока газа.

Приведенное в качестве прототипа устройство имеет ряд недостатков.

Основными недостатками являются:

- недостаточный контроль процесса смешения двух многофазных газовых потоков разноименно заряженных частиц;

- отсутствие ограничения на характерное время смешения, которое должно быть меньше характерного времени жизни возбужденных при ионизации частиц.

Решаемая техническая задача полезной модели заключается в повышении степени контроля процесса смешения двух многофазных газовых потоков разноименно заряженных частиц и в обеспечении характерного времени смешения меньше характерного времени жизни возбужденных при ионизации частиц.

Решаемая техническая задача в устройстве смешения двух многофазных газовых потоков содержащем источник газа первый выход которого подсоединен к входу первого редуктора, выход первого редуктора подсоединен к первому входу первого газового тракта, ко второму входу которого подсоединен распылитель частиц первого многофазного потока, выход первого газового тракта присоединен ко входу первого ионизатора, к которому подключен первый источник питания, выход первого ионизатора соединен с первым входом камеры смешения, другой выход источника газа подсоединен к входу второго редуктора, выход которого подсоединен к первому входу второго газового тракта, ко второму входу которого подсоединен второй распылитель частиц второго многофазного потока, выход второго газового тракта подсоединен ко входу второго ионизатора, к которому подключен второй источник, питания, выход второго ионизатора соединен со вторым входом камеры смешения, достигается тем, камера смешения совмещена с устройством создания магнитного поля, к которому подключен регулятор величины напряженности магнитного поля.

В предложенном устройстве смешения двух многофазных газовых потоков два газовых тракта могут быть расположены под углом друг к другу.

На фиг.1 изображена схема устройства смешения двух многофазных газовых потоков. На фиг.2 изображена схематичная траектория движения заряженных частиц под действием аксиального магнитного поля.

Устройство (фиг.1) содержит: источник газа 1, первый редуктор 2, первый газовый тракт 3, распылитель 4 частиц первого многофазного газового потока, первый ионизатор 5, первый регулятор тока 6, камеру смешения 7, второй редуктор 8, второй газовый тракт 9, распылитель 10 частиц второго многофазного газового потока, второй ионизатор 11, второй регулятор тока 12, устройство создания аксиального магнитного поля 13, регулятор величины напряженности магнитного поля 14 и камеру отделения 15. Блоки, содержащиеся в устройстве, могут быть выполнены по стандартных, опубликованных в литературе схемах.

Рассмотрим работу устройства смешения двух многофазных газовых потоков по фигуре 1.

В первый газовый тракт 3 подают газовый поток от источника газа 1. Источник газа 1 представляет собой баллон с газом. Химический состав газа зависит от способа ионизации, химического состава частиц, вводимых в первый и второй многофазные газовые потоки, например азот. Скорость потока газа регулируют первым редуктором 2. В первый газовый тракт 3 вводят частицы из распылителя 4 частиц первого многофазного газового потока и создают первый многофазный газовый поток. Ввод частиц в газовый тракт 3 может осуществляться любым известным способом, например, с помощью дозатора сыпучих материалов [Патент на изобретение РФ 2351123, А01К 5/02 от 04.09.2007]. Одновременно с этим газовый поток от источника газа 1, подают газ во второй газовый тракт 9. Скорость потока газа регулируют вторым редуктором 8. Во второй газовый канал 9 вводят частицы из распылителя 10 частиц второго многофазного газового потока и создают второй многофазный газовый поток. Первый многофазный газовый поток вводят в первый ионизатор 5. В первом ионизаторе 5 заряжают и возбуждают частицы первого многофазного газового потока за счет, например, коронного разряда. В случае использования коронного разряда, конструкция первого ионизатора 5 представляет собой систему плоского и игольчатого электродов. Это позволяет обеспечить высокую эффективность заряда частиц первого многофазного газового потока. Величину тока в ионизаторе 5 регулируют первым регулятором тока 6. В случае использования коронного разряда в качестве первого регулятора тока 6 используют источник постоянного напряжения, в котором предусмотрена регулировка выходного напряжения. Одновременно с этим второй многофазный поток вводят во второй ионизатор 11, в которой осуществляют заряд и возбуждение частиц второго многофазного газового потока. Частицы второго многофазного газового потока заряжают противоположным по знаку зарядом относительно заряда частиц первого многофазного газового потока. Требуемую величину заряда частиц второго многофазного газового потока обеспечивают вторым регулятором тока 12. В описываемом варианте устройство смешения двух многофазных газовых потоков (Фиг.1), конструкция второго ионизатора 11 идентична конструкции первого ионизатора 5. Далее два многофазных газовых потока разноименно заряженных частиц вводят в камеру смешения 7. Для уменьшения характерного времени смешения и повышения степени контроля процесса смешения камеру смешения 7 помещают в устройство создания аксиального магнитного поля 13. Создание аксиального магнитного поля может осуществляться любым известным способом [Патент на изобретение РФ 2305357 Н02К 1/06 от 07.02.2006, патент на изобретение РФ 2008135378/09 G01R 33/34, от 03.09.2008]. Положительно заряженные частицы, например частицы первого многофазного газового потока, в магнитном поле двигаются по часовой стрелке относительно вектора напряженности магнитного поля, а отрицательно заряженные частицы, например частицы второго многофазного газового потока, двигаются против часовой стрелки относительно вектора напряженности магнитного поля Н (Фиг.2). За счет инициирования встречного направления движения противоположно заряженных частиц в магнитном поле уменьшают характерное время смешения двух многофазных газовых потоков. Контроль процесса смешения двух многофазных газовых потоков разноименно заряженных частиц осуществляют за счет изменения регулятором 14 величины вектора напряженности магнитного поля Н. Продукты, образовавшиеся в процессе смешения двух многофазных газовых потоков противоположно заряженных частиц, отделяют от побочных продуктов и газа в камере отделения 15.

1. Устройство смешения многофазных газовых потоков, состоящее из источника газа, первый выход которого подсоединен к входу первого редуктора, выход первого редуктора подсоединен к первому входу первого газового тракта, ко второму входу которого подсоединен распылитель частиц первого многофазного потока, выход первого газового тракта присоединен ко входу первого ионизатора, к которому подключен первый источник питания, выход первого ионизатора соединен с первым входом камеры смешения, другой выход источника газа подсоединен к входу второго редуктора, выход которого подсоединен к первому входу второго газового тракта, ко второму входу которого подсоединен второй распылитель частиц второго многофазного потока, выход второго газового тракта подсоединен ко входу второго ионизатора, к которому подключен второй источник питания, выход второго ионизатора соединен со вторым входом камеры смешения, отличающееся тем, что камера смешения совмещена с устройством создания магнитного поля, к которому подключен регулятор величины напряженности магнитного поля.

2. Устройство смешения двух многофазных газовых потоков по п.1, отличающееся тем, что два газовых тракта расположены под углом друг к другу.



 

Похожие патенты:

Полезная модель относится к области пневмогидроавтоматики и может быть использована для подключения различных датчиков давления к импульсным линиям в системах автоматического контроля, регулирования и управления технологическими процессами
Наверх