Фотоионизационный детектор для газоаналитической аппаратуры

 

Полезная модель относится к области аналитической техники, а именно, к средствам измерений концентрации компонентов при газовом анализе.

Фотоионизационный детектор для газоаналитической аппаратуры, содержит лампу ультрафиолетового излучения, снабженную плоским выходным окном, над которым размещена проточная камера, образованная двумя дисковыми электродами, расположенными друг под другом, изготовленными из металлов различной работы выхода электронов и разделенные кольцеобразной фторопластовой прокладкой, электрометр, к которому подключены электроды, и регистратор сигнала детектора, подключенный в выходу электрометра, причем в нижнем электроде выполнено центральное отверстие, в которое вмонтировано окно из прозрачного для ультрафиолетового излучения материала, а верхний электрод снабжен отверстиями для входа и выхода потока анализируемого газа. Согласно полезной модели в детекторе между выходным окном и нижним электродом дополнительно установлен диск из диэлектрического материала с центральным отверстием, диаметр которого меньше диаметра отверстия нижнего электрода, а верхний электрод дополнительно снабжен центральным отверстием, диаметр которого равен диаметру отверстия нижнего электрода, при этом внутренний диаметр кольцеобразной фторопластовой прокладки превышает диаметры отверстий электродов, а оси симметрии всех центральных отверстий электродов, фторопластовой прокладки и диска из диэлектрического материала совмещены.

Полезная модель относится к области аналитической техники, а именно, к средствам измерений концентраций компонентов при газовом анализе.

Известен фотоионизационный детектор газов и паров (Фарзане Н.Г., Илясов Л.В., Азим-Заде А.Ю. Автоматические детекторы газов и жидкостей, М.: Энергоатомиздат, 1983 г., с.96), состоящий из ионизационной камеры, снабженной двумя электродами для создания коронного разряда, поляризующего электрода и коллекторного электрода, для измерения количества образовавшихся ионов. Также в камере находятся отверстия для ввода и вывода анализируемого газа. Принцип действия детектора состоит в том, что в потоке дополнительного газа, например, аргона, возбуждается коронный газовый разряд постоянного тока. В результате разряда образуются метастабильные атомы аргона, которые при высвечивании создают поток ионов, на пути которых помещают коллекторный электрод. Фотоионы либо непосредственно ионизируют молекулы компонентов смеси, либо ионизация происходит за счет передачи энергии фотонов через вновь образующие метастабильные атомы аргона. Ионный ток между поляризующим и коллекторным электродом, к которым приложена разность потенциалов равна 240 В, измеряется с помощью электрометра.

Недостатком такого фотоионизационного детектора является высокий уровень шума сигнала, возникающий за счет того, что в камере детектора возбуждается коронный газовый разряд.

Наиболее близким по технической сущности является фотоионизационный детектор газов и паров (RU, 94345, Кл. G01N 27/64, 2010), содержащий лампу ультрафиолетового излучения, снабженную плоским выходным окном, над которым размещена проточная камера, образованная двумя дисковыми электродами, расположенными друг под другом, изготовленными из металлов различной работы выхода электронов и разделенные кольцеобразной фторопластовой прокладкой, электрометр, к которому подключены электроды, и регистратор сигнала детектора, подключенный в выходу электрометра, причем в нижнем электроде выполнено центральное отверстие, в которое вмонтировано окно из прозрачного для ультрафиолетового излучения материала, а верхний электрод снабжен отверстиями для входа и выхода потока анализируемого газа.

Недостатком данного детектора является высокий уровень начального его выходного сигнала, что требует использования дополнительных электрических устройств для компенсации этого начального уровня.

Задачей полезной модели является обеспечение малого начального уровня выходного сигнала, позволяющего использование детектора в портативных газоанализаторах.

Техническим результатом является упрощение конструкции.

Поставленная задача и указанный технический результат достигаются тем, что в фотоионизационном детекторе для газоаналитической аппаратуры, содержащим лампу ультрафиолетового излучения, снабженную плоским выходным окном, над которым размещена проточная камера, образованная двумя дисковыми электродами, расположенными друг под другом, изготовленными из металлов различной работы выхода электронов и разделенные кольцеобразной фторопластовой прокладкой, электрометр, к которому подключены электроды, и регистратор сигнала детектора, подключенный в выходу электрометра, причем в нижнем электроде выполнено центральное отверстие, в которое вмонтировано окно из прозрачного для ультрафиолетового излучения материала, а верхний электрод снабжен отверстиями для входа и выхода потока анализируемого газа, согласно полезной модели между выходным окном и нижним электродом дополнительно установлен диск из диэлектрического материала с центральным отверстием, диаметр которого меньше диаметра отверстия нижнего электрода, а верхний электрод дополнительно снабжен центральным отверстием, диаметр которого равен диаметру отверстия нижнего электрода, при этом внутренний диаметр кольцеобразной фторопластовой прокладки превышает диаметры отверстий электродов, а оси симметрии всех центральных отверстий электродов, фторопластовой прокладки и диска из диэлектрического материала совмещены.

Такая конструкция детектора обеспечивает низкий начальный уровень выходного сигнала за счет того, что как нижний, так и верхний электроды защищены от ультрафиолетового излучения, что практически исключает фотоэлектронную эмиссию из электродов, определяющую высокий уровень начального выходного сигнала. Причем нижний электрод защищен диском из диэлектрического материала, диаметр центрального отверстия которого меньше, чем диаметр центрального отверстия этого электрода, а исключение освещения ультрафиолетового излучения верхнего электрода достигается наличием в нем отверстия по диаметру равного центральному отверстию нижнего электрода.

По сравнению с прототипом, заявляемая конструкция имеет отличительную особенность в совокупности элементов и их взаимном расположении.

Схема фотоионизационнго детектора для газоаналитической аппаратуры показана на фиг.1.

Фотоионизационный детектор содержит лампу ультрафиолетового излучения 1, снабженную плоским выходным окном 2, над которым размещена проточная камера, образованная двумя дисковыми электродами 3 и 4, расположенными друг под другом, изготовленными из металлов различной работы выхода электронов и разделенные кольцеобразной фторопластовой прокладкой 5, электрометр 6, к которому подключены электроды, и регистратор 7 сигнала детектора, подключенный в выходу электрометра. В нижнем электроде выполнено центральное отверстие 8, в которое вмонтировано окно из прозрачного для ультрафиолетового излучения материала, а верхний электрод снабжен отверстиями для входа 9 и выхода 10 потока анализируемого газа. Между выходным окном и нижним электродом дополнительно установлен диск 11 из диэлектрического материала с центральным отверстием 12, а верхний электрод дополнительно снабжен центральным отверстием 13. Детектор снабжен фторопластовым изолятором 14 и металлическим защитным корпус - экраном 15. К лампе ультрафиолетового излучения подводится напряжение от источника питания 16.

Работа фотоионизационного детектора осуществляется следующим образом.

Анализируемый газ непрерывно прокачивается через входное отверстие 9 и выходное отверстие 10 проточной камеры фотоионизационного детектора. В пространстве камеры между электродом 3 и электродом 4 анализируемый газ ионизируется тонким лучом ультрафиолетового излучения лампы 1, диаметр которого определяется диаметром отверстия 12. Так как электроды 3 и 4 выполнены из различных металлов с отличающимися работами выхода, то между ними возникает разность потенциалов и в проточной камере возникает электрическое поле. Под действием этого поля ионы перемещаются в камере. Значение сигнала детектора измеряется и регистрируется с помощью электрометрического усилителя 6 и регистратора 7. Получаемый сигнал пропорционален концентрации определяемых компонентов анализируемого газа. Так как ультрафиолетовое излучение поступает в камеру в виде тонкого луча и не попадает на поверхности электродов 3 и 4, то в камере практически отсутствует электронная эмиссия, определяющая высокий начальный уровень выходного сигнала.

Экспериментальным путем установлено, что предлагаемый фотоионизационный детектор для газоаналитической аппаратуры при использовании в качестве электродов никель и алюминий, фторопластовую прокладку 200 мкм, ультрафиолетовую лампу с длиной волны равную 180 нм позволяет получить для ряда углеводородов, например пропана, пропилена, гексана, гептана чувствительность в 8-10 раз большую, чем чувствительность пламенно-ионизационного детектора, при использовании газа-носителя азота или гелия.

Преимуществом предлагаемого технического решения является:

- простота конструкции

- возможность использования в портативных газовых хроматографических анализаторах и анализаторах концентрации отдельных углеводородов.

Детектор может найти применение для измерения концентраций компонентов в газовой хроматографии, а также в качестве автоматического анализатора состава бинарных и псевдобинарных газовых сред

Фотоионизационный детектор для газоаналитической аппаратуры, содержащий лампу ультрафиолетового излучения, снабженную плоским выходным окном, над которым размещена проточная камера, образованная двумя дисковыми электродами, расположенными друг под другом, изготовленными из металлов различной работы выхода электронов и разделенные кольцеобразной фторопластовой прокладкой, электрометр, к которому подключены электроды, и регистратор сигнала детектора, подключенный в выходу электрометра, причем в нижнем электроде выполнено центральное отверстие, в которое вмонтировано окно из прозрачного для ультрафиолетового излучения материала, а верхний электрод снабжен отверстиями для входа и выхода потока анализируемого газа, отличающийся тем, что между выходным окном и нижним электродом дополнительно установлен диск из диэлектрического материала с центральным отверстием, диаметр которого меньше диаметра отверстия нижнего электрода, а верхний электрод дополнительно снабжен центральным отверстием, диаметр которого равен диаметру отверстия нижнего электрода, при этом внутренний диаметр кольцеобразной фторопластовой прокладки превышает диаметры отверстий электродов, а оси симметрии всех центральных отверстий электродов, фторопластовой прокладки и диска из диэлектрического материала совмещены.



 

Наверх