Ориентация расположения и приведение в действие активированных давлением инструментов
Группа изобретений относится к скважинной компоновке и способу ориентации расположения и приведения в действие активированных давлением инструментов. Скважинная компоновка включает в себя ориентирующее инструмент устройство, включающее в себя функциональный блок, который получает результаты измерений скважинных параметров, и генерирующее импульсы устройство, которое передает результаты измерений скважинных параметров для того, чтобы ориентировать расположение скважинного инструмента. Дроссельное устройство соединено с ориентирующим инструмент устройством и включает в себя сопло, ограничивающее поток текучей среды через него, и при этом циркуляционный клапан соединен с дроссельным устройством и включает в себя сопло, ограничивающее поток текучей среды через него. Спускной инструмент для хвостовика соединен с циркуляционным клапаном, чтобы транспортировать хвостовик и активированный давлением инструмент в ствол скважины. Генерирующее импульсы устройство функционирует с текучей средой при первом значении давления, и дроссельное устройство приводится в действие путем увеличения давления с первого значения до второго значения. Циркуляционный клапан приводится в действие текучей средой при третьем значении давления, и активированный давлением инструмент приводится в действие путем увеличения давления с третьего значения до четвертого значения. Технический результат заключается в обеспечении возможности ориентации расположения и приведения в действие активированных давлением инструментов. 2 н. и 8 з.п. ф-лы, 15 ил.
УРОВЕНЬ ТЕХНИКИ
[0001] В нефтяной и газовой промышленности ствол скважины, как правило, бурят с поверхности Земли, используя колонну бурильных труб с буровым долотом на ее дальнем конце. Буровой раствор (который обычно называют «глинистый буровой раствор») циркулирует вниз через бурильную трубу для того, чтобы охлаждать буровое долото и доставлять буровые шламы на поверхность по кольцевому пространству, образованному между бурильной трубой и стенкой ствола скважины. Затем пробуренный ствол скважины часто заканчивают креплением ствола скважины укрепляющими скважину трубами, что обычно называют креплением скважины обсадными трубами, которые могут быть прикреплены цементом к внутренней стенке ствола скважины, чтобы изолировать ствол скважины от окружающих подземных геологических пластов и помочь предотвратить внезапное обрушение ствола скважины. В некоторых стволах скважины две или большее количество соосных звеньев обсадной колонны подвешены к устьевой арматуре, и опускаются в ствол скважины на разную глубину.
[0002] Другая укрепляющая скважину труба, которую обычно называют хвостовиком, может быть установлена в нижней части ствола скважины. В отличие от вышеописанной обсадной колонны, хвостовик не простирается до устьевой арматуры, а вместо этого соединен с дальним концом самой нижней секции обсадной колонны. Широкий диапазон скважинных инструментов и оборудования используется для спуска в скважину и определения местоположения хвостовика в стволе скважины. Такие скважинные инструменты включают в себя центраторы для центрирования хвостовика в пределах ствола скважины, калибровочные инструменты, используемые для проверки внутреннего диаметра ствола скважины, эксплуатационную насосно-компрессорную колонну, используемую для транспортировки текучих сред скважины на поверхность, и рабочую колонну, используемую для транспортировки хвостовика в направлении вниз по стволу скважины. Другие скважинные инструменты могут включать: пакеры, клапаны, циркуляционные инструменты и инструменты для перфорации скважины.
[0003] Некоторые из скважинных инструментов, используемых для размещения и установки хвостовика в стволе скважины, приводятся в действие либо иным образом управляются на основании заранее установленного перепада давления или порогового значения давления. Если заранее установленное пороговое значение давления преждевременно превышено, скважинный инструмент может самопроизвольно быть приведен в действие и тем самым препятствовать правильной установке хвостовика в стволе скважины.
КРАТКОЕ ОПИСАНИЕ ГРАФИЧЕСКИХ МАТЕРИАЛОВ
[0004] Приведенные ниже фигуры включены в описание для иллюстрации некоторых аспектов данного изобретения и не должны рассматриваться в качестве исчерпывающих вариантов осуществления изобретения. Раскрываемый объект изобретения допускает значительные модификации, изменения, комбинации и эквиваленты по форме и сути без отклонения от объема данного изобретения.
[0005] Фиг. 1 представляет собой схему типовой скважинной системы, которая может включать в себя принципы данного изобретения.
[0006] Фиг. 2А и 2В представляют собой вид сбоку и изометрический вид, соответственно, типового варианта осуществления ориентирующего инструмент устройства, показанного на Фиг. 1.
[0007] Фиг. 3А представляет собой вид сбоку в поперечном разрезе генератора импульсов текучей среды, показанного на Фиг. 1.
[0008] Фиг. 3В представляет собой увеличенный вид генерирующего импульсы устройства, показанного на Фиг. 3А.
[0009] Фиг. 4 представляет собой увеличенную часть генератора импульсов текучей среды, показанного на Фиг. 3А и, более конкретно, увеличенную часть функционального блока, который включает в себя плунжер для электрической связи.
[0010] Фиг. 5 представляет собой увеличенный изометрический вид функционального блока, показанного на Фиг. 3А и, более конкретно, источник питания и узел датчика, которые используются в функциональном блоке.
[0011] Фиг. 6А представляет собой изометрический вид другого типового варианта осуществления ориентирующего инструмент устройства, показанного на Фиг. 1.
[0012] Фиг. 6В представляет собой вид с торца ориентирующего инструмент устройства, показанного на Фиг. 6А.
[0013] Фиг. 6С представляет собой вид сбоку в поперечном разрезе ориентирующего инструмент устройства, показанного на Фиг. Фиг.6А, выполненном по линиям 6С-6С Фиг. 6В.
[0014] Фиг. 6D представляет собой вид сбоку в поперечном разрезе ориентирующего инструмент устройства, показанного на Фиг. 6А, выполненном по линиям 6D-6D Фиг. 6В.
[0015] Фиг. 7А и 7В представляют собой виды сбоку в поперечном разрезе дроссельного устройства, показанного на Фиг. 1.
[0016] Фиг. 8А и 8В представляют собой виды сбоку в поперечном разрезе циркуляционного клапана, показанного на Фиг. 1.
ПОДРОБНОЕ ОПИСАНИЕ СУЩНОСТИ ИЗОБРЕТЕНИЯ
[0017] Данная заявка относится к скважинным работам в нефтяной и газовой промышленности и, более конкретно, к ориентации расположения скважинных инструментов и последующему приведению в действие инструмента, активированного давлением.
[0018] Варианты осуществления изобретения, описанные в данном документе, позволяют оператору скважины предупреждать настройку скважинных инструментов, активированных заранее установленным давлением, одновременно обеспечивая импульсную телеметрию в режиме реального времени. Раскрытый типовой способ функционирования включает в себя продвижение скважинной компоновки в ствол скважины на рабочей колонне. Скважинная компоновка включает в себя ориентирующее инструмент устройство, дроссельное устройство, функционально и гидравлически соединенное с ориентирующим инструмент устройством, циркуляционный клапан, функционально и гидравлически соединенный с дроссельным устройством, и спускной инструмент для хвостовика, функционально соединенный с циркуляционным клапаном, для транспортировки хвостовика и активированного давлением инструмента в ствол скважины. Затем текучую среду прокачивают через рабочую колонну и скважинную компоновку с первой скоростью потока, соответствующей первому значению давления текучей среды. Затем с помощью функционального блока ориентирующего инструмент устройства получают результаты измерений скважинных параметров. Затем результаты измерений скважинных параметров передаются в позицию на поверхности скважины генерирующим импульсы устройством ориентирующего инструмент устройства для ориентации расположения скважинного инструмента в стволе скважины. В некоторых случаях скважинный инструмент может быть спускным инструментом для хвостовика.
[0019] Затем скорость потока текучей среды через скважинную компоновку увеличивается на величину, которая увеличивает давление текучей среды до второго значения давления, необходимого для приведения в действие дроссельного устройства. Приведение в действие дроссельного устройства может увеличить общую площадь потока через дроссельное устройство. Затем текучую среду можно прокачивать со скоростью, которая приводит к третьему значению давления в циркуляционном клапане для приведения в действие циркуляционного клапана. Увеличение третьего значения давления до четвертого значения давления приводит в действие активированный давлением инструмент. В некоторых случаях активированный давлением инструмент, может представлять собой пакер хвостовика, связанный со спускным инструментом для хвостовика. С описанной скважинной компоновкой давление, необходимое для установки спускного инструмента для хвостовика, не может быть создано до тех пор, пока не будет приведен в действие циркуляционный клапан. Кроме того, перепад давления (в зависимости от скорости потока), необходимый для приведения в действие циркуляционного клапана, не может быть создан до тех пор, пока не будет задействовано дроссельное устройство.
[0020] Фиг. 1 изображает типовую скважинную систему 100, которая может включать в себя принципы данного изобретения в соответствии с одним или несколькими вариантами осуществления изобретения. Скважинная система 100 включает в себя ствол 102 скважины, пробуренный через один или несколько подземных геологических пласта 104, и обеспечивающий первую или «верхнюю» часть 106а и вторую или «нижнюю» часть 106b, где нижняя часть 106b продлевает глубину ствола 102 скважины еще глубже в геологические пласты 104. Верхняя часть 106а была пробурена от положения на поверхности скважины (то есть поверхности Земли) и впоследствии укреплена обсадной колонной 108, которая надежно закреплена в пласте в пределах ствола 102 скважины цементом 110. Хотя лишь одно звено обсадной колонны 108 изображено на Фиг. 1, будет понятно, что несколько звеньев обсадной колонны 108 могут быть соосно расположены в стволе 102 скважины и просходить до разных глубин. Нижняя часть 106b представляет собой продолжение ствола 102 скважины, пробуренное после завершения верхней части 106а.
[0021] Как показано, скважинная компоновка 112 проходит в стволе скважины 102 и транспортируется в направлении вниз по стволу скважины на рабочей колонне 114, такой как сочлененная труба (например, эксплуатационная труба, бурильная труба и т.д.) или гибкая труба. Скважинная компоновка 112 может включать в себя ориентирующее инструмент устройство 116, дроссельное устройство 118 и циркуляционный клапан 120.
Ориентирующее инструмент устройство 116, дроссельное устройство 118 и циркуляционный клапан 120 могут быть функционально соединены друг с другом и каждый их них с рабочей колонной 114 таким образом, что текучая среда, прокачиваемая в направлении вниз по стволу скважины через рабочую колонну 114 от положения на поверхности скважины, может последовательно проходить через каждый компонент. Используемый в данном документе термин «функционально связанный» относится к прямому или косвенному сцеплению между двумя составными частями. Соответственно, несмотря на то, что на Фиг. 1 изображено ориентирующее инструмент устройство 116 непосредственно соединенным с дроссельным устройством 118, а дроссельное устройство 118 непосредственно соединенным с циркуляционным клапаном 120, будет понятно, что секция рабочей колонны 114, скважинного инструмента или другого промежуточного вспомогательного элемента может альтернативно размещаться между каждым компонентом, не выходя за объем данного изобретения.
[0022] Скважинная компоновка 112 может дополнительно включать в себя спускной инструмент 122 для хвостовика, который используется для транспортировки хвостовика 124 в нижнюю часть 106b ствола 102 скважины и предназначен для надежного закрепления хвостовика 124 в рабочем положении. Как проиллюстрировано, хвостовик 124 был перемещен в нижнюю часть 106b и установлен в нижней части 106b ствола 102 скважины путем подвешивания хвостовика 124 от нижней части обсадной колонны 108 с помощью подвесного устройства 126 для хвостовика, содержащегося в спускном инструменте 122 для хвостовика. Хвостовик 124 показан перед тем, как он будет зацементирован в рабочем положении путем закачки цемента в кольцевое пространство 128, образованное между хвостовиком 124 и стволом 102 скважины. Как только хвостовик 124 и связанное подвесное устройство 126 для хвостовика установлены в стволе 102 скважины, пакер 130 хвостовика, содержащийся в спускном инструменте 122 для хвостовика, может затем использоваться для герметизации верхнего конца хвостовика 124. Рабочая колонна 114 может быть выполнена с возможностью транспортировки текучих сред (например, бурового раствора, цемента и т.д.) в направлении вниз по стволу скважины, и через скважинную компоновку 112 и хвостовик 124 для того, чтобы управлять компонентами скважинной компоновки 112 и, следовательно, может быть использована для ориентации положения и надежного закрепления одного или нескольких скважинных инструментов, например, хвостовика 124, в стволе 102 скважины.
[0023] Ориентирующее инструмент устройство 116 включает в себя функциональный блок 132 и генерирующее импульсы устройство 134, которое соединено с возможностью передачи информации с функциональным блоком 132. Функциональный блок 132 включает в себя множество скважинных датчиков (не показаны), которые получают результаты измерений различных скважинных параметров в режиме реального времени, а генерирующее импульсы устройство 134 может быть выполнено с возможностью передачи полученных в режиме реального времени данных скважинных параметров с помощью гидроимпульсной телеметрии в позицию на поверхности скважины, чтобы помочь ориентировать положение одного или нескольких скважинных инструментов 136 (показан один). В некоторых вариантах осуществления изобретения скважинный инструмент 136 может быть связан с хвостовиком 124 и включать в себя, не ограничиваясь перечисленным: предварительно выполненное окно, узел сопряжения бокового отверстия для многоствольной скважины, пакер ствола скважины (например, пакер 130 хвостовика), систему противопесочного фильтра, систему гравийной набивки, башмак направляющего инструмента с косым срезом и любой другой известный скважинный инструмент, требующий ориентации расположения. Однако в других вариантах осуществления изобретения скважинный инструмент 136 может содержать спускной инструмент 122 для хвостовика и, более конкретно, подвесное устройство 126 для хвостовика. Для целей нижеследующего описания скважинный инструмент 136 будет ссылаться на любой из вышеупомянутых инструментов, включая подвесное устройство 126 для хвостовика.
[0024] Скважинные датчики, содержащиеся в функциональном блоке 132, могут включать в себя, но не ограничиваясь перечисленным: датчик массы, датчик крутящего момента, датчик гамма-излучения, датчик направления, датчик температуры, датчик давления, импульсный нейтронный инструмент и подобные датчики. Соответственно, типовые данные скважинных параметров, которые могут быть получены скважинными датчиками, включают в себя, но не ограничиваются перечисленным: массу и/или крутящий момент на рабочей колонне 114 или любой части скважинной компоновки 112, азимутальное положение скважинного инструмента 136, направление передней поверхности режущего инструмента скважинного инструмента 136, а также температуру и/или давление в стволе 102 скважины. Как будет понятно специалистам в данной области техники, данные, относящиеся к таким скважинным параметрам, могут быть крайне важны для обеспечения надлежащей установки, ориентирования и надежного закрепления скважинного инструмента 136 в стволе 102 скважины.
[0025] После получения данных скважинных параметров, функциональный блок 132 может быть выполнен с возможностью приведения в действие генерирующего импульсы устройства 134, чтобы отправить полученные данные скважинных параметров на поверхность скважины в режиме реального времени, чтобы помочь правильно сориентировать скважинный инструмент 136 в стволе 102 скважины. Функциональный блок 132 включает в себя подходящую электронику, которая хранит данные скважинных параметров, передает данные скважинных параметров в генерирующее импульсы устройство 134 и обеспечивает мощность для общего функционирования ориентирующего инструмент устройства 116.
[0026] Дроссельное устройство 118 может быть гидравлически соединено с ориентирующим инструмент устройством 116 таким образом, что текучая среда, проходящая через ориентирующее инструмент устройство 116 в направлении вниз по стволу скважины, может затем проходить через дроссельное устройство 118. Как описано ниже, дроссельное устройство 118 может включать в себя сопло, которое создает перепад давления, который может потребоваться для правильной работы генерирующего импульсы устройства 134. Однако, несмотря на то, что через сопло создается заранее определенный перепад давления, дроссельное устройство 118 может быть выполнено с возможностью приведения в действие, и тем самым увеличения общей площади потока (то есть количества эффективного потока текучей среды) через дроссельное устройство 118.
[0027] Циркуляционный клапан 120 может быть гидравлически соединен с дроссельным устройством 118 таким образом, что текучая среда, проходящая через дроссельное устройство 118 в направлении вниз по стволу скважины, может циркулировать через циркуляционный клапан 120. При циркуляции текучая среда, проходящая через циркуляционный клапан 120, выбрасывается в окружающее кольцевое пространство 138, образованное между рабочей колонной 114 и обсадной колонной 108. Кроме того, циркуляционный клапан 120 может позволить текучей среде в пределах ствола 102 скважины проходить в рабочую колонну 114 в направлении вверх по стволу скважины, когда скважинная компоновка 112 спускается в направлении вниз по стволу скважины в пределах ствола 102 скважины. В частности, при спуске скважинной компоновки 112 в ствол 102 скважины текучая среда в пределах ствола скважины 102 и, более конкретно, в пределах кольцевого пространства 138 может циркулировать в циркуляционном клапане 120 и выравнивать давление в пределах рабочей колонны 114. Альтернативно, и в случае, если кольцевое пространство 138 заполнено газом, а рабочая колонна 114 на поверхности заполнена жидкой текучей средой, текучая среда в пределах рабочей колонны 114 может быть отведена в кольцевое пространство 138 через циркуляционный клапан 120, когда скважинная компоновка 112 спускается в ствол 102 скважины. Подобно дроссельному устройству 118, циркуляционный клапан 120 может также иметь сопло, которое ограничивает поток текучей среды через циркуляционный клапан 120. Как только через его сопло создается заранее определенный перепад давления, циркуляционный клапан 120 будет приведен в действие, чтобы закрыть клапан и тем самым не допустить циркуляцию текучей среды в кольцевое пространство 138.
[0028] Когда циркуляционный клапан 120 находится в закрытом положении, в рабочей колонне 114 может создаваться давление, чтобы привести в действие один или несколько инструментов, активированных давлением, таких как один или оба из: подвесное устройство 126 для хвостовика и пакер 130 хвостовика. В других вариантах осуществления изобретения или в дополнение к этому варианту, скважинная компоновка 112 может включать в себя отдельный активированный давлением инструмент 140, например, который содержится в хвостовике 124. В таких вариантах осуществления изобретения активированный давлением инструмент 140, может содержать, не ограничиваясь перечисленным: устройство изоляции ствола скважины, сетчатый фильтр в сборе или любой скважинный инструмент, который может приводиться в действие или активироваться под давлением. Для целей нижеследующего описания активированный давлением инструмент 140 будет относиться к любому из вышеупомянутых инструментов, но может альтернативно относиться к одному или обоим: подвесному устройству 126 для хвостовика и пакеру 130 хвостовика, когда это необходимо.
[0029] Фиг. 2А и 2В представляют собой вид сбоку и изометрический вид, соответственно, типового варианта осуществления ориентирующего инструмент устройства 116. Ориентирующее инструмент устройство 116 может включать в себя удлиненный, обычно трубчатый корпус 202, который определяет внутренний канал 204 потока текучей среды (Фиг. 2В). Генерирующее импульсы устройство 134 может быть выполнено с возможностью установки на корпус 202 в пределах полости 206, определенной на внешней поверхности 208 корпуса 202. В проиллюстрированном варианте осуществления изобретения полость 206 изображена как полость, заданная в радиальной высадке 210, сформированной на внешней поверхности 208, или иным образом проходящая в радиальном направлении наружу от нее. Однако в других вариантах осуществления изобретения полость 206 может быть полностью сформирована в стенке корпуса 202, проходя между внутренней поверхностью и внешней поверхностью 208 корпуса 202. В любом случае генерирующее импульсы устройство 134 может быть расположено таким образом, что оно не загораживает внутренний канал 204 потока текучей среды, так что внутренний канал 204 для потока текучей среды способен демонстрировать произвольный диаметр, вдоль всей длины корпуса 202, для прохождения инструментов или труб через ориентирующее инструмент устройство 116.
[0030] Функциональный блок 132 также показан смонтированным на корпусе 202 в пределах полости 212, определенной на внешней поверхности 208. Как и в случае с полостью 206, полость 212 может быть определена в радиальной высадке 210, как проиллюстрировано, или, в качестве альтернативы, может быть сформирована полностью в стенке корпуса 202. В любом случае функциональный блок 132 также расположен на корпусе 202 таким образом, что он не проходит во внутренний канал и иным образом не загораживает внутренний канал 204 потока текучей среды.
[0031] В некоторых вариантах осуществления изобретения, как проиллюстрировано, ориентирующее инструмент устройство 116 может включать в себя второе генерирующее импульсы устройство 214, которое также может быть соединено с возможностью передачи информации с функциональным блоком 132 и функционировать под его управлением. Подобно первому генерирующему импульсы устройству 134 второе генерирующее импульсы устройство 214 может быть смонтировано на корпусе 202 в пределах полости 216, определенной на внешней поверхности 208, где полость 216 либо определена в радиальной высадке 210, либо иным образом сформирована полностью в стенке корпуса 202. В любом случае второе генерирующее импульсы устройство 214 также может быть расположено таким образом, чтобы оно не проходило во внутренний канал и иным образом не загораживало внутренний канал 204 потока текучей среды.
[0032] Каждое из первого и второго генерирующих импульсы устройств 134, 214 может быть выполнено с возможностью управления потоком текучей среды по соответствующей внутренней линии 218 тока, показанных как внутренние линии 218а и 218b тока, соответственно. Только часть внутренних линий 218а, 218b тока показана на Фиг. 2А и 2В. Каждая внутренняя линия 218а, 218b тока сообщается с внутренним каналом 204 потока текучей среды и соответствующим выпускным отверстием 220а и 220b, соответственно, которое гидравлически сообщается с кольцевым пространством 138 (Фиг. 1), определенным между рабочей колонной 114 (Фиг. 1) и обсадной колонной 108 (Фиг. 1). В результате управления потоком текучей среды через внутренние линии 218а, 218b тока будут создаваться импульсы давления текучей среды, которые могут передаваться на поверхность скважины для передачи данных скважинных параметров. Более конкретно, создание отрицательных импульсов может контролироваться путем направления текучей среды в кольцевое пространство 138 через одно или оба выпускных отверстия 220а и 220b.
[0033] Первое и второе генерирующие импульсы устройства 134, 214 могут работать в нескольких сценариях или конфигурациях функционирования. В одном сценарии функционирования, например, первое и второе генерирующие импульсы устройства 134, 214 могут работать одновременно таким образом, что импульс давления текучей среды, создаваемый ориентирующим инструмент устройством 116 представляет собой комбинацию импульсов давления текучей среды, создаваемых первым и вторым генерирующими импульсы устройствами 134, 214. В таком сценарии частота и амплитуда импульсов давления текучей среды, создаваемые первым и вторым генерирующими импульсы устройствами 134, 214, могут быть подобными, так что импульсы дополняют и/или усиливают друг друга. Таким образом, импульсы давления текучей среды, создаваемые ориентирующим инструмент устройством 116, имеют величину (или амплитуду), которая представляет собой сумму величин отдельных импульсов, создаваемых первым и вторым генерирующими импульсы устройствами 134, 214.
[0034] В другом сценарии функционирования первое и второе генерирующие импульсы устройства 134, 214 могут функционировать независимо. Это может оказаться полезным в случае отказа одного из первого или второго генерирующих импульсы устройств 134, 214. Соответственно, это обеспечивает степень резервирования без необходимости того, что ориентирующее инструмент устройство 116 должно быть целиком извлечено из ствола 102 скважины (Фиг. 1) и возвращено на поверхность скважины для ремонта.
[0035] В еще одном сценарии функционирования первое и второе генерирующие импульсы устройства 134, 214 могут быть выполнены с возможностью передачи импульсов давления текучей среды, представляющих различные данные скважинных параметров или тех же данных параметров, измеренных в разное время. Таким образом при работе генерирующие импульсы устройства 134, 214 приводятся в действие индивидуально и в различные моменты времени, так что создаваемые текучей средой импульсы давления не перекрываются и тем самым гарантируют, что в положении на поверхности скважины смогут различить два сигнала импульсов давления.
[0036] В еще одном дополнительном сценарии функционирования первое и второе генерирующие импульсы устройства 134, 214 могут быть выполнены с возможностью передачи в позицию на поверхности скважины импульсов давления текучей среды, представляющих одинаковые данные скважинных параметров, но передаваемых с использованием различных профилей или сигнатур импульсов (давление в сопоставлении со временем). Понятно, что это может обеспечить возможность учитывать конкретные сценарии функционирования в скважине влияя на передачу импульсов. Так, например, плотность и/или вязкость текучих сред в стволе 102 скважины и присутствие твердых материалов (например, бурового шлама) могут повлиять на эффективность или на передачу импульсов давления текучей среды к поверхности.
Однако импульс различной продолжительности и/или амплитуды может быть легче передан (и таким образом обнаружен на поверхности) в зависимости от плотности и/или вязкости текучей среды в стволе скважины или наличия твердых материалов. Таким образом, данные, которые необходимо передать ориентирующим инструмент устройством 116, могут быть эффективно переданы более чем одним способом в зависимости от скважинных условий.
[0037] В некоторых вариантах осуществления первое и второе генерирующие импульсы устройства 134, 214 могут быть установлены в друг за другом или расположены параллельно. Могут использоваться другие монтажные конфигурации, посредством которых генерирующие импульсы устройства 134, 214 расположены в различных угловых положениях по окружности корпуса 202. Например, генерирующие импульсы устройства 134, 214 генерации импульсов могут быть смещены на углы 90°, 180° друг от друга или на другие угловые интервалами относительно друг друга.
[0038] Фиг. 3А представляет собой вид сбоку в поперечном разрезе ориентирующего инструмент устройства 116 и функционального блока 132, показанных на Фиг. 2А-2В, а Фиг. 3В представляет собой увеличенный вид генерирующего импульсы устройства 134 в соответствии с одним или несколькими вариантами осуществления изобретения. Только первое генерирующее импульсы устройство 134 изображено на проиллюстрированных поперечных разрезах на Фиг. 3А и 3В. Однако следует принять во внимание, что нижеследующее описание первого генерирующего импульсы устройства 134 одинаково применимо ко второму генерирующему импульсы устройству 214 (Фиг. 2А-2В), если оно применяется.
[0039] Генерирующее импульсы устройство 134 и/или функциональный блок 132 могут быть выполнены в форме отдельных картриджей или вставок, которые могут быть установлены с возможностью отсоединения в корпусе 202 в соответствующих полостях 206, 212, соответственно. Картриджи генерирующего импульсы устройства 134 и функционального блока 132 имеют форму либо иным образом выполнены таким образом, что они полностью установлены в пределах своих соответствующих полостей 206, 212 и, следовательно, не занимают значительное пространство в скважине и не препятствуют (загораживают) внутренний канал 204 потока. Таким образом, может быть обеспечен доступ ориентирующего инструмент устройства 116 к стволу 102 скважины (Фиг. 1) в направлении вниз по стволу скважины, например, для прохождения инструментов или труб, которые могут потребоваться в технологических процессах заканчивания скважины.
[0040] Генерирующее импульсы устройство 134 может включать в себя впускное отверстие 302, определенное во внутренней стенке 304 корпуса 202, и выпускное отверстие 220а, которое изображено радиально напротив впускного отверстия 302. Выпускное отверстие 220а может быть наклонным по отношению к основной оси корпуса 202, так что в процессе эксплуатации текучая среда, выходящая из генерирующего импульсы устройства 134, бьет струей в направлении вверх по стволу скважины в кольцевое пространство 138 вдоль ствола 102 скважины (Фиг. 1) к поверхности. Соответственно, впускное отверстие 302 к внутренней линии 218а тока и выпускное отверстие 220а могут быть выполнены в общем осевом положении вдоль длины корпуса 202.
[0041] Генерирующее импульсы устройство 134 включает в себя клапан 306, который расположен на внутренней линии 218а тока и включает в себя клапанный элемент 308 и клапанное седло 310. Клапан 306 может быть приведен в действие для управления потоком текучей среды в пределах внутренней линии 218а тока. Это достигается перемещением клапанного элемента 308 в уплотнительную опорную поверхность (прилегающее соединение) клапанного седла 310 и из нее. Генерирующее импульсы устройство 134 также включает в себя механизм 312 автоматического управления, соединенный с клапанным элементом 308 для управления потоком текучей среды через внутреннюю линию 218а тока. Механизм 312 автоматического управления управляется электрическим образом и выполнен в форме соленоида или двигателя, имеющего вальный привод 314. Бальный привод 314 механизма автоматического управления соединен с клапанным элементом 308 для управления его осевым перемещением и обеспечивает линейное или поворотное входное воздействие для функционирования клапанного элемента 308, причем последнее осуществляется посредством подходящего преобразователя поворотного перемещения в линейное. Конструкция клапана 306 и механизма 312 автоматического управления по существу аналогична конструкции, описанной в находящемся в совладении патенте США №2012/0106297 и, следовательно, не будут описаны более подробно.
[0042] Как проиллюстрировано, внутренняя линия 218а тока проходит от впускного отверстия 302, через клапан 306, к выпускному отверстию 220а. Соответственно, во время эксплуатации клапан 306 управляет потоком текучей среды по внутренней линия 218а тока от впускного отверстия 302 к выпускному отверстию 220а для создания импульсов давления текучей среды. В зависимости от того, как функционирует клапан 306, генерирующее импульсы устройство 134 может создавать положительные или отрицательные импульсы давления текучей среды. Положительные импульсы создаются посредством срабатывания клапана 306 для закрытия внутренней линии 218а тока, а отрицательные импульсы создаются посредством срабатывания клапана 306 для открытия внутренней линии 218а тока. Создание импульсов давления текучей среды может быть достигнуто без ограничения внутреннего канала 204 потока.
[0043] Функциональный блок 132 выполнен с возможностью управлять генерирующим импульсы устройством 134 (и вторым генерирующим импульсы устройством 214, если оно используется), по мере необходимости. Функциональный блок 132 включает в себя секцию 316 электроники, соединенную с возможностью передачи информации с генерирующим импульсы устройством 134 через электрический соединительный элемент 318.
[0044] На Фиг. 4 показана увеличенная часть функционального блока 132, которая обозначена на Фиг. 3А. Как проиллюстрировано, электрический соединительный элемент 318 может быть расположен в пределах узла 402 отверстия уплотнения, установленного в пределах канала 404 генерирующего импульсы устройства 134. Конец 406 электрического соединительного элемента 318 осуществляет электрическое соединение с соответствующим гнездом 408, которое передает энергию механизму 312 автоматического управления (Фиг. 3А-3В). Функционирование механизма 312 автоматического управления приводит к тому, что вальный привод 314 механизма автоматического управления (Фиг. 3А-3В) перемещает в осевом направлении клапанный элемент 308 (Фиг. 3А-3В) в уплотняющее прилегающее соединение и из уплотняющего прилегающего соединения с клапанным седлом 310 (Фиг. 3А-3В). В некоторых вариантах осуществления изобретения одна или несколько спиральных пружин (не показаны) могут вынуждать клапанный элемент 308 входить в прилегающее соединение или выходить из прилегающего соединения с клапанным седлом 310, когда он не функционирует.
[0045] Фиг. 5 представляет собой увеличенный изометрический вид функционального блока 132 в соответствии с одним или несколькими вариантами осуществления изобретения. Как проиллюстрировано, функциональный блок 132 может включать в себя источник электрической энергии в виде первой батареи 502а и второй батареи 502b. Первая и вторая батареи 502а, 502b могут быть электрически соединены с первым и вторым генерирующими импульсы устройствами 134, 214 через первый электрический соединительный элемент 318а и второй электрический соединительный элемент 318b, соответственно. Однако другие варианты осуществления изобретения могут не включать в себя второе генерирующее импульсы устройство 214, и каждая, и первая и вторая, батареи 502а, 502b могут подавать электрическую энергию первому генерирующему импульсы устройству 134.
[0046] Секция 316 электроники может включать в себя узел 504 модуля датчиков, который может включать в себя один или несколько скважинных датчиков 506 (показан один) и блок 508 сбора данных. Как описано выше, скважинный датчик (датчики) 506 может использоваться для получения в режиме реального времени результатов измерений различных скважинных параметров во время функционирования скважинной компоновки 112 (Фиг. 1), и может включать в себя, не ограничиваясь перечисленным: датчик массы, датчик крутящего момента, датчик гамма-излучения, датчик направления, датчик температуры, датчик давления, импульсный нейтронный инструмент и подобные датчики. Данные скважинных параметров, полученные скважинным датчиком (датчиками) 506, могут передаваться в блок 508 сбора данных для обработки и передачи в генерирующее импульсы устройство 134 (и во второе генерирующее импульсы устройство 214, если оно используется). Затем генерирующее импульсы устройство 134 может передавать полученные данные скважинных параметров на поверхность посредством операции гидроимпульсной телеметрии, описанной выше.
[0047] Блок 508 сбора данных может включать в себя компьютерное оборудование, используемое для реализации описанных в данном документе способов, и может включать в себя процессор, выполненный с возможностью выполнения одной или нескольких последовательностей команд, программирующие установки или коды, хранящиеся на долговременном считываемом компьютером носителе данных. Процессор может быть, например: микропроцессором общего назначения, микроконтроллером, цифровым процессором сигналов, специализированной интегральной схемой, программируемой пользователем матрицей логических элементов, программируемым логическим устройством, контроллером, конечной машиной, логической схемой, дискретными аппаратными компонентами, искусственной нейронной сетью, или любым подобным подходящим объектом, который может выполнять вычисления или другие манипуляции данными. В некоторых вариантах осуществления изобретения компьютерное оборудование может дополнительно включать в себя такие элементы, как, например: запоминающее устройство (например, оперативное запоминающее устройство (ОЗУ), флэш-память, постоянное запоминающее устройство (ПЗУ), программируемое постоянное запоминающее устройство (ППЗУ), стираемое постоянное запоминающее устройство (СППЗУ), регистрирующие устройства, жесткие диски, съемные диски, CD-диски, DVD-диски, или любые другие подобные подходящие устройства хранения информации или носители данных.
[0048] Фиг. 6А представляет собой изометрический вид другого типового ориентирующего инструмент устройства 600 в соответствии с одним или несколькими вариантами осуществления изобретения. В качестве альтернативы ориентирующее инструмент устройство 600 может использоваться вместо ориентирующего инструмент устройства 116, показанного на Фиг. 1, 2А-2В и 3А-3В. Кроме того, ориентирующее инструмент устройство 600 может быть в некотором отношении сходным с ориентирующим инструмент устройством 116, и поэтому может быть лучше понято со ссылкой на него, где одинаковые цифры представляют собой одинаковые элементы или компоненты, не описанные снова. Ориентирующее инструмент устройство 600 включает в себя удлиненный, обычно трубчатый корпус 602, который определяет внутренний канал 604 потока текучей среды (лучше всего видно на Фиг. 6С и 6D). Генерирующее импульсы устройство 134 может быть установлено на корпусе 602 в пределах полости 606, определенной на внешней поверхности 608 корпуса 602. В проиллюстрированном варианте осуществления изобретения полость 606 изображена как полость, заданная в радиальной высадке 610, сформированной на внешней поверхности 608, или иным образом проходящая в радиальном направлении наружу от нее. Однако в других вариантах осуществления изобретения полость 606 может быть полностью сформирована в стенке корпуса 602, проходя между внутренней поверхностью и внешней поверхностью 608 корпуса 602. В любом случае генерирующее импульсы устройство 134 может быть расположено таким образом, что оно не загораживает внутренний канал 604 потока текучей среды, так что внутренний канал 604 для потока текучей среды способен демонстрировать произвольный диаметр, проходящий вдоль всей длины корпуса 602, для прохождения инструментов или труб через ориентирующее инструмент устройство 600.
[0049] Функциональный блок 132 также показан смонтированным на корпусе 602 в пределах соответствующей полости 612, определенной на внешней поверхности 608. Как и в случае с полостью 606, полость 612 может быть определена в радиальной высадке 610 или, как проиллюстрировано, во второй радиальной высадке 614, которая имеет угловое смещение по отношению к радиальной высадке 610. В качестве альтернативы полость 612 может быть полностью сформирована в стенке корпуса 602. В любом случае функциональный блок 132 также расположен на корпусе 602 таким образом, что он не проходит во внутренний канал и иным образом не загораживает внутренний канал 604 потока текучей среды.
[0050] Фиг. 6В представляет собой вид с торца ориентирующего инструмент устройства 600 и указывает виды сбоку в поперечном разрезе для Фиг. 6С и 6D.
[0051] Фиг. 6С представляет собой вид сбоку в поперечном разрезе ориентирующего инструмент устройства 600, выполненном по линиям 6С-6С, показанным на Фиг. 6В, а Фиг. 6D представляет собой вид сбоку в поперечном разрезе ориентирующего инструмент устройства 600, выполненном по линиям 6D-6D, показанным на Фиг. 6В. Более конкретно, Фиг. 6С представляет увеличенный вид генерирующего импульсы устройства 134, а Фиг. 6D представляет увеличенный вид функционального блока 132. Генерирующее импульсы устройство 134 и/или функциональный блок 132 могут быть выполнены в форме отдельных картриджей или вставок, которые могут быть установлены с возможностью отсоединения в корпусе 602, в соответствующих полостях 606, 612, соответственно. Генерирующее импульсы устройство 134 и функциональный блок 132 не препятствуют прохождению через (не загораживают) внутренний канал 604 потока.
[0052] Генерирующее импульсы устройство 134, показанное на Фиг. 6С, включает в себя впускное отверстие 302, определенное во внутренней стенке 616 корпуса 602, и выпускное отверстие 220а, которое изображено радиально напротив впускного отверстия 302. Клапан 306 показан размещенным на внутренней линии 218 тока и включает в себя клапанный элемент 308, как описано выше. Механизм 312 автоматического управления соединен с клапанным элементом 308 для управления потоком текучей среды через внутреннюю линию 218 тока.
[0053] Функциональный блок 132, показанный на Фиг. 6D, включает в себя секцию 316 электроники, которая включает в себя источник 618 электрической энергии (например, батарею) и узел 504 модуля датчиков, включающий в себя один или несколько скважинных датчиков (т.е. скважинные датчики 506, показанные на Фиг. 5) и блок сбора данных (т.е. блок 508 сбора данных, показанный на Фиг. 5). Данные скважинных параметров, полученные скважинным датчиком (датчиками) 506, могут передаваться в блок 508 сбора данных для обработки и передачи в генерирующее импульсы устройство 134. Затем генерирующее импульсы устройство 134 может передавать полученные данные скважинных параметров на поверхность посредством операции гидроимпульсной телеметрии, описанной выше.
[0054] Фиг. 7А и 7В представляют собой виды сбоку в поперечном разрезе дроссельного устройства 118, показанного на Фиг. 1, в соответствии с одним или несколькими вариантами осуществления изобретения. Более конкретно, на Фиг. 7А дроссельное устройство 118 показано в первом или «неактивированном» положении, а на Фиг. 7В дроссельное устройство 118 показано во втором или «активированном» положении. Как проиллюстрировано, дроссельное устройство 118 включает в себя удлиненный корпус 702, который обеспечивает верхний конец 704а, нижний конец 704b и центральный канал 706 потока, проходящий между верхним и нижним концами 704а, 704b. Верхний конец 704а может быть выполнен с возможностью функционального соединения с нижним концом ориентирующего инструмент устройства 116 (Фиг. 1), а нижний конец 704b может быть выполнен с возможностью функционального соединения с верхним концом циркуляционного клапана 120 (Фиг. 1).
[0055] Дроссельное устройство 118 может дополнительно включать в себя наружную втулку 708а и внутреннюю втулку 708b, каждая из которых расположена в пределах центрального канала 706 потока. Внутренняя втулка 708b соосно расположена в пределах наружной втулки 708а и может перемещаться относительно нее, как описано ниже. Наружная втулка 708а может обеспечивать верхний конец 710а и нижний конец 710b. Наружная втулка 708а может быть надежно закреплена в пределах центрального канала 706 потока путем продвижения наружной втулки 708а в центральный канал 706 потока до тех пор, пока нижний конец 710b не войдет в контакт с радиальным буртиком 712, образованным внутренней стенкой корпуса 702 в пределах центрального канала 706 потока. Пружинное стопорное кольцо 714 или подобное ему может быть впоследствии вставлено в паз 715, определенный в пределах центрального канала 706 потока, и зацеплять верхний конец 710а для надежного крепления наружной втулки 708а к радиальному буртику 712, и таким образом не допуская осевое перемещение в пределах центрального канала 706 потока.
[0056] Внутренняя втулка 708b может быть надежно прикреплена с возможностью отсоединения к наружной втулке 708а одним или несколькими срезными устройствами 716 (показаны два). В некоторых вариантах осуществления изобретения, как проиллюстрировано, срезное устройство (устройства) 716 может содержать один или несколько срезных штифтов или срезных винтов, которые частично проходят во внутреннюю втулку 708b. В других вариантах осуществления изобретения срезное устройство (устройства) 716 может содержать срезное кольцо или тому подобное. В любом случае срезное устройство (устройства) 716 может быть выполнено с возможностью срезания либо иным образом разрушения срезных элементов при достижении заранее определенной осевой нагрузки и, таким образом, освобождения внутренней втулки 708b для перемещения в осевом направлении в пределах центрального канала 706 потока. Когда срезное устройство (устройства) 716 не повреждено, внутренняя втулка 708b надежно закреплена в первом положении, как показано на Фиг. 7А, а срезание срезного устройства (устройств) 716 позволяет внутренней втулке 708b перемещаться в осевом направлении в пределах центрального канала 706 потока по отношению к наружной втулке 708а во второе положение, как показано на Фиг. 7В.
[0057] Внутренняя втулка 708b может определять внутреннюю линию 718 тока, которая гидравлически сообщается с центральным каналом 706 потока и позволяет текучим средам циркулировать через дроссельное устройство 118 между верхним и нижним концами 704а, 704b. В пределах внутренней линии 718 тока может быть предусмотрено сопло 720, которое может обеспечивать точку ограничения текучей среды в пределах дроссельного устройства 118. Сопло 720 может оказаться полезным для обеспечения требуемого перепада давления, которое может быть использовано генерирующим импульсы устройством 134 (и вторым генерирующим импульсы устройством 214, если оно используется) ориентирующего инструмент устройства 116 (Фиг. 1 и 2А-2В) для получения правильных амплитуд импульсов в создаваемых сигналах импульсов давления. Более конкретно, когда клапан 306 (Фиг. 3А-3В) приведен в действие, на поверхности может быть обнаружен перепад давления, который согласуется с размером сопла 720 в дроссельном устройстве 118.
[0058] Внутренняя втулка 708b может дополнительно определять одно или несколько верхних отверстий 722а, и одно или несколько нижних отверстий 722b. Как проиллюстрировано, верхние отверстия 722а определены радиально через внутреннюю втулку 708b в направлении вверх (т.е. влево на Фиг. 7А-7В) от сопла 720, а нижние отверстия 722b определены радиально через внутреннюю втулку 708b в направлении вниз (т.е. вправо на Фиг. 7А-7В) от сопла 720. Аналогично, наружная втулка 708а может определять одно или несколько верхних отверстий 724а и одно или несколько нижних отверстий 724b, где нижние отверстия 724b определены в направлении вниз от верхних отверстий 724а. Когда внутренняя втулка 708b находится в первом положении, верхние и нижние отверстия 722а, 722b и 724а, 724b внутренней и наружной втулок 708а, 708b, соответственно, смещены, как показано на Фиг. 7А. Однако когда внутренняя втулка 708b находится во втором положении, верхние и нижние отверстия 722а, 722b и 724а, 724b совмещаются, как показано на Фиг. 7В. Когда верхние и нижние отверстия 722а, 722b и 724а, 724b совмещены, текучая среда во внутренней линии 718 тока может иметь возможность перетекать в глухое отверстие 726 и перетекать из глухого отверстия 726, определенного в корпусе 702. Соответственно, когда внутренняя втулка 708b перемещается во второе положение, общая площадь потока через дроссельное устройство 118 увеличивается, поскольку текучая среда способна не только проходить через сопло 720, но также вокруг сопла 720, проходя через совмещенные верхние отверстия 722а, 724а над соплом 720, через глухое отверстие 726 и обратно в центральный канал 706 потока через совмещенные нижние отверстия 722b, 724b ниже сопла 720.
[0059] Типовое функционирование дроссельного устройства 118 как части скважинной компоновки 112, показанной на Фиг. 1, теперь обеспечено. Когда скважинная компоновка 112 спускается в ствол 102 скважины (Фиг. 1), текучая среда может прокачиваться через рабочую колонну 114 (Фиг. 1) к ориентирующему инструмент устройству 116 (Фиг. 1 и 2А-2В) при первом значении Р1 давления, достаточном для функционирования генерирующего импульсы устройства 134 (и второго генерирующего импульсы устройства 214, если оно используется), как описано выше. При первом значении Р1 давления текучая среда может также циркулировать через дроссельное устройство 118 в неактивированном положении, когда внутренняя втулка 708b находится в первом положении, как показано на Фиг. 7А. Текучая среда проходит через центральный канал 706 потока и проходит во внутреннюю линию 718 тока, при этом она падает на сопло 720. Когда текучая среда при первом значении Р1 давления падает на сопло 720, на сопле 720 создается перепад давления, что приводит к тому, что на внутреннюю втулку 708b прикладывается осевая нагрузка. Однако осевая нагрузка, возникающая от текучей среды при первом значении Р1 давления может быть недостаточной для срезания срезного устройства 716, и поэтому внутренняя втулка 708b остается в первом положении, в то время как текучая среда циркулирует через дроссельное устройство 118 при первом значении Р1 давления.
[0060] Текучая среда может циркулировать при первом значении Р1 давления в то время как ориентирующее инструмент устройство 116 обеспечивает результаты измерений ориентации расположения, которые помогают оператору скважины вращать рабочую колонну 114 и тем самым правильно ориентировать расположение скважинного инструмента 136 (Фиг. 1) в пределах ствола 102 скважины, как описано выше. Однако после того, как функционирование устройства ориентирования инструмента 116 больше не требуется, генерирующее импульсы устройство 134 (и второе генерирующее импульсы устройство 214, если оно используется) может быть, необязательно, переключено на режим без импульсов и давление текучей среды в пределах рабочей колонны 114 может быть увеличено до второго значения Р2 давления за счет увеличения скорости потока. Текучая среда может циркулировать через дроссельное устройство 118 при втором значении Р2 давления и тем самым создавать больший перепад давления на сопле 720, что приводит к увеличению осевой нагрузки, приложенной к внутренней втулке 708b, достаточной для срезания срезного устройства 716 и отсоединения внутренней втулки 708b от наружной втулки 708а. Затем внутренняя втулка 708b может свободно перемещаться в осевом направлении во второе положение в пределах наружной втулки 708а под действием гидравлического усилия текучей среды, приложенного на сопло 720.
[0061] Внутренняя втулка 708b может перемещаться в осевом направлении в пределах наружной втулки 708а до момента контакта с нижним радиальным буртиком 728, определяемым внутренней стенкой корпуса 702 в пределах центрального канала 706 потока. Когда внутренняя втулка 708b находится во втором положении, верхние и нижние отверстия 722а, 722b и 724а, 724b совмещаются и поэтому общая площадь потока через дроссельное устройство 118 увеличивается, таким образом позволяя текучей среде не только проходить через сопло 720, но также и обтекать сопло 720 через совмещенные верхние и нижние отверстия 722а, 722b и 724а, 724b и глухое отверстие 726. Текучая среда сбрасывается из совмещенных нижних отверстий 722b и 724b и снова вводится обратно в центральный канал 706 потока через внутреннюю линию 718 тока.
[0062] Фиг. 8А и 8В представляют собой виды сбоку в поперечном разрезе циркуляционного клапана 120, показанного на Фиг. 1, в соответствии с одним или несколькими вариантами осуществления изобретения. Более конкретно, на Фиг. 8А циркуляционный клапан 120 показан в первом или «открытом» положении, а на Фиг. 8В циркуляционный клапан 120 показан во втором или «закрытом» положении. Как проиллюстрировано, циркуляционный клапан 120 включает в себя удлиненный корпус 802, который обеспечивает верхний конец 804а, нижний конец 804b и центральный канал 806 потока, проходящий между верхним и нижним концами 804а, 804b. Верхний конец 804а может быть выполнен с возможностью функционально соединяться с нижним концом 704b дроссельного устройства 118 (Фиг. 7А-7В), а нижний конец 804b может быть выполнен с возможностью функционально соединяться с верхним концом спускного инструмента 122 для хвостовика (Фиг. 1).
[0063] Циркуляционный клапан 120 может дополнительно включать в себя наружную втулку 808а и внутреннюю втулку 808b, каждая из которых расположена в пределах центрального канала 806 потока. Внутренняя втулка 808b соосно расположена в пределах наружной втулки 808а и может перемещаться относительно нее, как описано ниже. Наружная втулка 808а может обеспечивать верхний конец 810а и нижний конец 810b. Наружная втулка 808а может быть надежно закреплена в пределах центрального канала 806 потока путем продвижения наружной втулки 808а в центральный канал 806 потока до тех пор, пока нижний конец 810b не войдет в контакт с радиальным буртиком 812, образованным внутренней стенкой корпуса 802 в пределах центрального канала 806 потока. Пружинное стопорное кольцо 814 или подобное ему может быть вставлено в паз 815, определенный в пределах центрального канала 806 потока, и зацеплять верхний конец 810а для надежного крепления наружной втулки 808а к радиальному буртику 812, и может таким образом не допускать осевое перемещение в пределах центрального канала 806 потока.
[0064] Внутренняя втулка 808b может быть надежно прикреплена с возможностью отсоединения к наружной втулке 808а с использованием одного или нескольких срезных устройств 816 (показаны два). Срезное устройство (устройства) 816 может быть аналогичным срезным устройствам 716 (Фиг. 7А-7В), описанным выше, и не будет описано повторно. Когда срезное устройство (устройства) 816 не повреждено, внутренняя втулка 808b надежно закреплена в первом положении, как показано на Фиг. 8А, а срезание срезного устройства (устройств) 816 позволяет внутренней втулке 808b перемещаться в осевом направлении в пределах центрального канала 806 потока по отношению к наружной втулке 808а во второе положение, как показано на Фиг. 8В.
[0065] Внутренняя втулка 808b может определять внутреннюю линию 818 тока, которая гидравлически сообщается с центральным каналом 806 потока и позволяет текучим средам циркулировать через циркуляционный клапан 120 между верхним и нижним концами 804а, 804b. В пределах внутренней линии 818 тока может быть предусмотрено сопло 820, которое может обеспечивать точку ограничения текучей среды в пределах циркуляционного клапана 120.
[0066] Внутренняя втулка 808b может дополнительно определять одно или несколько циркуляционных отверстий 822 (показаны три), выполненных радиально через внутреннюю втулку 808b, а наружная втулка 808а может определять одно или несколько переходных отверстий 824 (показаны два), выполненных радиально через наружную втулку 808а. Когда внутренняя втулка 808b находится в первом положении, как показано на Фиг. 8А, циркуляционные и переходные отверстия 822, 824 совмещаются и таким образом, способствуют гидравлическому сообщению между внутренней линией 818 тока и одним или несколькими радиальными отверстиями 826 потока (показаны два), определенными в корпусе 802. Радиальные отверстия 826 потока могут быть выполнены с возможностью сбрасывать текучую среду за пределы циркуляционного клапана 120 и, более конкретно, в кольцевое пространство 138, определенное между рабочей колонной 114 (Фиг. 1) и обсадной колонной 108 (Фиг. 1). Однако когда внутренняя втулка 808b перемещается во второе положение, как показано на Фиг. 8В, циркуляционные и переходные отверстия 822, 824 смещаются и, таким образом, не допускают гидравлическое сообщение между внутренней линией 818 тока и кольцевым пространством 138 через радиальные отверстия 826 потока.
[0067] Циркуляционный клапан 120 может дополнительно включать в себя пружину 828, расположенную в пределах полости 830 для пружины, совместно определенной между внешней и внутренней втулками 808а, 808b. Пружина 828 может содержать спиральную пружину сжатия, выполненную с возможностью вынуждения возвращения внутренней втулки 808b в первое положение. Когда внутренняя втулка 808b перемещается во второе положение, как показано на Фиг. 8В пружина 828 сжимается и создает энергию пружины.
[0068] Типовое функционирование циркуляционного клапана 120 как части скважинной компоновки 112, показанной на Фиг. 1, теперь обеспечено. Когда скважинная компоновка 112 продвигается в направлении вниз по стволу 102 скважины (Фиг. 1), текучие среды в пределах ствола 102 скважины могут проходить в циркуляционный клапан 120 в направлении вверх по стволу скважины (т.е. влево на Фиг. 8А-8В). Когда циркуляционный клапан 120 находится в открытом положении текучие среды ствола скважины могут отводиться из циркуляционного клапана 120 в кольцевое пространство 138 путем прохождения через совмещенные циркуляционные и переходные отверстия 822, 824 и радиальные отверстия 826 потока.
[0069] В какой-то момент, пока скважинная компоновка 112 продвигается в направлении вниз по стволу скважины в пределах ствола 102 скважины, текучая среда может прокачиваться через рабочую колонну 114 при первом значении Р1 давления, как рассматривалось выше. Поток текучей среды при первом значении Р1 давления может циркулировать через ориентирующее инструмент устройство 116 (Фиг. 1 и 2А-2В) для функционирования генерирующего импульсы устройства 134 (и второго генерирующего импульсы устройства 214, если оно используется). Однако, как указано выше, потока текучей среды при первом значении Р1 давления недостаточно для приведения в действие дроссельноого устройства 118 (Фиг. 1 и 7А-7В). Также потока текучей среды при первом значении Р1 давления может быть недостаточно для приведения циркуляционного клапана 120 из открытого положения в закрытое положение.
[0070] После того, как функционирование ориентирующего инструмент устройства 116 (Фиг. 1 и 2А-2В) больше не требуется, скорость потока текучей среды может быть увеличена, чтобы увеличить давление до второго значения Р2 давления, чтобы привести дроссельное устройство 118 в активированное положение, как описано выше. При втором значении Р2 давления текучая среда также циркулирует через циркуляционный клапан 120 в открытом положении, когда внутренняя втулка 808b находится в первом положении, как показано на Фиг. 8А. Текучая среда проходит через центральный канал 806 потока, который включает в себя внутреннюю линию 818 тока и сопло 820, при этом на сопле 820 создается перепад давления. Поток текучей среды при втором значении Р2 давления создает осевую нагрузку на внутреннюю втулку 808b, поскольку текучая среда падает на внутреннюю втулку 808b в сопле 820. В некоторых вариантах осуществления изобретения осевая нагрузка, возникающая в результате второго значения Р2 давления, может быть достаточной для срезания срезного устройства 816, и поэтому циркуляционный клапан 120 может перемещаться в закрытое положение одновременно с приведением в действие дроссельного устройства 118, или вскоре после этого.
[0071] Однако в других вариантах осуществления изобретения осевая нагрузка, возникающая в результате второго значения Р2 давления, может быть недостаточной для срезания срезного устройства 816, и поэтому внутренняя втулка 808b остается в первом положении, в то время как текучая среда циркулирует через циркуляционный клапан 120 при втором значении Р2 давления. В таких вариантах осуществления изобретения для срезания срезного устройства 816 скорость потока текучей среды может быть увеличена так, чтобы увеличить давление до третьего значения РЗ давления, где Р1<Р2<Р3. Текучая среда может циркулировать через циркуляционный клапан 120 при третьем значении Р3 давления и таким образом, создавать больший перепад давления на сопле 820, что создает увеличенную осевую нагрузку на внутреннюю втулку 808b, достаточную для срезания срезного устройства 816 и отсоединения внутренней втулки 808b от наружной втулки 808а. Затем внутренняя втулка 808b может свободно перемещаться в осевом направлении во второе положение в пределах наружной втулки 808а до момента контакта с нижним радиальным буртиком 832, определяемым внутренней стенкой корпуса 802 в пределах центрального канала 806 потока. Когда внутренняя втулка 808b находится во втором положении, циркуляционные и переходные отверстия 822, 824 смещаются, и таким образом не допускают гидравлическое сообщение между внутренней линией 818 тока и кольцевым пространством 138 через радиальные отверстия,826 потока. Перемещение внутренней втулки 808b во второе положение также сжимает пружину 828 в пределах полости 830 для пружины.
[0072] Когда циркуляционный клапан 120 находится в закрытом положении, скорость потока текучей среды снова может быть увеличена для увеличения давления в пределах рабочей колонны 114, выше третьего значения РЗ давления до четвертого значения Р4 давления, которое требуется для того, чтобы привести в действие активированный давлением инструмент 140 (Фиг. 1), где Р1<Р2<Р3<Р4. Как будет понятно, наличие дроссельного устройства 118 и циркуляционного клапана 120, приводимых в действие при втором значении Р2 давления и третьем значении Р3 давления, соответственно, может оказаться выгодным для обеспечения двойной меры безопасности, которая предотвращает преждевременную установку активированного давлением инструмента 140 до того, как активированный давлением инструмент 140 правильно расположен в стволе 102 скважины (Фиг. 1).
[0073] В некоторых вариантах осуществления изобретения рабочая колонна 114 может быть перекрыта заглушкой на ее дальнем конце, и поэтому четвертое значение Р4 давления может быть достигнуто достаточно быстро, поскольку не допускается выход потока текучей среды из рабочей колонны 114. В таких вариантах осуществления изобретения активированный давлением инструмент 140 может быть подвесным устройством 126 для хвостовика (Фиг. 1) и/или пакером 130 хвостовика (Фиг. 1), и приведение в действие подвесного устройства 126 для хвостовика и/или пакера 130 хвостовика может происходить в управляемой последовательности, в то время как скорость прокачки текучей среды замедляется и прокачка останавливается. Однако в других вариантах осуществления изобретения на конце рабочей колонны 114 может быть небольшой дроссель или сопло, и поэтому четвертое значение Р4 давления для установки активированного давлением инструмента 140 может быть достигнуто более постепенным образом.
[0074] После приведения в действие активированного давлением инструмента 140 при четвертом значении Р4 давления скорость потока текучей среды может быть уменьшена, чтобы тем самым уменьшить давление и позволить спускному инструменту 122 для хвостовика выйти из зацепления с хвостовиком 124 (Фиг. 1). В вариантах осуществления изобретения, когда рабочая колонна 114 перекрыта заглушкой на ее дальнем конце, давление текучей среды может быть уменьшено до нуля на поверхности (например, работа насосов останавливается или поток обходит рабочую колонну 114). В вариантах осуществления изобретения, где небольшое количество текучей среды выходит из дальнего конца рабочей колонны 114, давление может быть уменьшено за счет уменьшения скорости потока текучей среды через рабочую колонну 114. Уменьшение давления текучей среды до значения ниже четвертого значения Р4 давления позволит силе сжатия пружины 828 перемещать внутреннюю втулку 808b назад в первое положение, когда циркуляционные и переходные отверстия 822, 824 снова совмещаются с радиальными отверстиями 826 потока. Как только спускной инструмент 122 для хвостовика выходит из зацепления с хвостовиком 124, рабочая колонна 114 и скважинная компоновка 112 (Фиг. 1) могут быть возвращены в положение на поверхности скважины. Когда скважинная компоновка 112 возвращается в положение на поверхности скважины, и поскольку циркуляционный клапан 120 возвращается в его открытое положение, текучая среда может выходить из рабочей колонны 114 через радиальные отверстия 826 потока.
[0075] Для изменения давления, необходимого для приведения в действие дроссельного устройства 118 и циркуляционного клапана 120, в дроссельное устройство 118 и циркуляционный клапан 120 могут быть внесены различные модификации или изменения. Например, размер сопел 720, 820 дроссельного устройства 118 и циркуляционного клапана 120 может изменяться для уточнения того, какой перепад давления на соплах 720, 820 требуется для срезания срезных устройств 716, 816. Соответственно, в таких вариантах осуществления изобретения второе значение Р2 давления и третье значение Р3 давления могут быть оптимизированы для соответствия конкретному применению. Подобным образом, размер или срезное значение срезных устройств 716, 816 могут быть оптимизированы для того, чтобы специально приспособиться к перепаду давления на соплах 720, 820, который требуется для срезания срезных устройств 716, 816. Как будет понятно, размер сопел 720, 820 дроссельного устройства 118 и циркуляционного клапана 120, и размер или срезное значение срезных устройств 716, 816 могут подвергаться весу глинистого бурового раствора (т.е. весу текучей среды, циркулирующей через узел 110. Соответственно, ограничения давления на дроссельном устройстве 118 и циркуляционном клапане 120 могут быть оптимизированы для соответствия любому желаемому скважинному применению.
[0076] Следует отметить, что по меньшей мере в одном варианте осуществления изобретения ориентирующее инструмент устройство 116 может быть заменено инструментом измерения во время бурения (ИВБ) и связанным с ним модулем телеметрии импульсов глинистого бурового раствора, не выходя за объем данного изобретения. Инструмент ИВБ может быть выполнен с возможностью обеспечивать практически те же возможности мониторинга ствола скважины, что и функциональный блок 132, а телеметрический модуль может обеспечивать практически те же возможности передачи информации, что и генерирующие импульсы устройства 134, 214. Однако преимущества использования ориентирующего инструмент устройства 116, как описано в данном документе, включают в себя: более низкую стоимость инструмента по сравнению с обычными инструментами ИВБ и телеметрическими модулями, способность ориентирующего инструмент устройства 116 функционировать при более низких скоростях потока текучей среды по сравнению с обычными телеметрическими модулями, и простоту конфигурации дроссельного устройства 118 при создании оптимизированных отрицательных импульсов давления.
[0077] Варианты осуществления изобретения, описанные в данном документе, могут оказаться полезными, когда требуется оставить активированный давлением инструмент в скважине в течение некоторого периода времени, например, в случае работ с подводной скважиной, когда необходимо временно прекратить работы над скважиной из-за плохой погоды. Например, общепринято спускать спускной инструмент для хвостовика в ствол скважины с пустым концом и под ним активированное давлением устройство, при этом скважинная текучая среда проходит в рабочую колонну, поскольку узел спускается в направлении вниз по стволу скважины. В случае если на поверхности стоит плохая погода, может потребоваться подвесить хвостовик в пределах ствола скважины и вывести плавучую платформу или установку из окружающего района, чтобы она не была повреждена непогодой. В то время как скважина временно закрыта, температура текучей среды в пределах ствола скважины может увеличиться, что может увеличить давление текучей среды и преждевременно, на неправильной глубине в стволе скважины, привести в действие активированный давлением инструмент. Однако описанные в настоящее время узлы и способы не допускают преждевременное приведение в действие инструмента, активированного давлением, поскольку не существует замкнутого объема текучей среды. В таком применении вышеописанный циркуляционный клапан 120 может быть размещен в скважине без описанного выше дроссельного устройства 118 и ориентирующего инструмент устройства 116.
[0078] Исполняемые последовательности, описанные в данном документе, могут быть реализованы с одной или несколькими последовательностями кода, содержащимися в запоминающем устройстве. В некоторых вариантах осуществления изобретения такой код можно считывать в запоминающее устройство с другого считываемого машиной носителя данных. Выполнение последовательностей команд, содержащихся в запоминающем устройстве, может заставить процессор выполнить этапы способа, описанные в данном документе. Один или несколько процессоров в многопроцессорной компоновке могут также использоваться для выполнения последовательностей команд в запоминающем устройстве. Кроме того, фиксированная проводная схема может использоваться вместо или в сочетании с программными командами для реализации различных вариантов реализации изобретения, описанных в данном документе. Таким образом, данные варианты реализации изобретения не ограничиваются какой-либо конкретной комбинацией аппаратного и/или программного обеспечения.
[0079] Как используется в данном документе, машиночитаемый носитель данных будет ссылаться на любой носитель данных, который прямо или косвенно предоставляет команды процессору для выполнения. Машиночитаемый носитель данных может принимать множество форм, включая, например, долговременные носители данных, кратковременные носители данных и средства передачи данных. Долговременные носители данных могут включать, например, оптические и магнитные диски. Кратковременные носители данных могут включать, например, динамическое запоминающее устройство. Средства передачи данных могут включать, например: коаксиальные кабели, провод, волоконную оптику и провода, которые образуют шину. Обычные формы носителей данных, считываемых при помощи машины, могут включать в себя, например: дискеты, гибкие диски, жесткие диски, магнитные ленты, другие подобные магнитные носители данных, CD-диски, DVD-диски, другие подобные оптические носители данных, перфокарты, бумажные ленты и подобные физические носители данных с перфорированным рисунком, RAM, ROM, PROM, EPROM и флеш EPROM.
[0080] Варианты осуществления изобретения, описанного в данном документе, включают:
[0081] А. Скважинную компоновку, которая включает в себя ориентирующее инструмент устройство, включающее в себя функциональный блок с одним или несколькими скважинными датчиками, и генерирующее импульсы устройство, которое используется для ориентации расположения скважинного инструмента в пределах ствола скважины, дроссельное устройство, функционально и гидравлически соединенное с ориентирующим инструмент устройством, которое включает в себя сопло, ограничивающее поток текучей среды через дроссельное устройство, циркуляционный клапан, функционально и гидравлически соединенный с дроссельным устройством, который включает в себя сопло, ограничивающее поток текучей среды через циркуляционный клапан, и спускной инструмент для хвостовика, функционально соединенный с циркуляционным клапаном для того, чтобы транспортировать хвостовик и активированный давлением инструмент в ствол скважины, при этом генерирующее импульсы устройство функционирует с текучей средой при первом значении давления, а дроссельное устройство может быть приведено в действие путем увеличения давления с первого значения до второго значения, чтобы увеличить общую площадь потока через дроссельное устройство, и при этом циркуляционный клапан приводится в действие текучей средой при третьем значении давления, а активируемый давлением инструмент приводится в действие при увеличении давления с третьего значения до четвертого значения.
[0082] В. Способ, который включает в себя продвижение скважинного узла в ствол скважины на рабочей колонне, при этом скважинная компоновка включает в себя ориентирующее инструмент устройство, дроссельное устройство, функционально и гидравлически соединенное с ориентирующим инструмент устройством, циркуляционный клапан, функционально и гидравлически соединенный с дроссельным устройством, и спускной инструмент для хвостовика, функционально соединенный с циркуляционным клапаном для транспортировки хвостовика и активированного давлением инструмента в ствол скважины, прокачивание текучей среды через рабочую колонну и скважинную компоновку при первом значении давления, получение результатов измерений скважинных параметров от одного или нескольких датчиков ориентирующего инструмент устройства и передача результатов измерений скважинных параметров в позицию на поверхности скважины с помощью генерирующего импульсы устройства ориентирующего инструмент устройства, ориентирование расположения скважинного инструмента в пределах ствола скважины на основании результатов измерений скважинных параметров, увеличение давления с первого значения до второго значения для того, чтобы привести в действие дроссельное устройство и таким образом увеличить общую площадь потока через дроссельное устройство, при этом дроссельное устройство включает в себя сопло, ограничивающее поток текучей среды от ориентирующего инструмент устройства через дроссельное устройство, прокачивание текучей среды через циркуляционный клапан при третьем значении давления для того, чтобы привести в действие циркуляционный клапан, при этом циркуляционный клапан включает в себя сопло, ограничивающее поток текучей среды от дроссельного устройства через циркуляционный клапан, и увеличение давления с третьего значения до четвертого значения для того, чтобы привести в действие активированный давлением инструмент.
[0083] Каждый из вариантов осуществления изобретения - А и В - может иметь один или несколько следующих дополнительных элементов в любой комбинации: Элемент 1: который отличается тем, что первое значение давления меньше второго значения давления, второе значение давления меньше третьего значения давления, а третье значение давления меньше четвертого значения давления. Элемент 2: который отличается тем, что первое значение давления меньше второго значения давления, второе значение давления такое же, как и третье значение давления, и второе и третье значения давления меньше четвертого значения давления. Элемент 3: который отличается тем, что скважинный инструмент содержит инструмент, выбранный из группы, состоящей из подвесного устройства для хвостовика спускного инструмента для хвостовика, предварительно выполненного окна, узла сопряжения бокового отверстия, пакера ствола скважины, системы противопесочного фильтра, башмака направляющего инструмента с косым срезом и системы гравийной набивки. Элемент 4: который отличается тем, что один или несколько скважинных датчиков выбраны из группы, состоящей из датчика массы, датчика крутящего момента, датчика гамма-излучения, датчика направления, датчика температуры, датчика давления и импульсного нейтронного инструмента. Элемент 5: который отличается тем, что активированный давлением инструмент содержит инструмент, выбранный из группы, состоящей из пакера хвостовика, подвесного устройства для хвостовика и пакера ствола скважины. Элемент 6: который отличается тем, что ориентирующее инструмент устройство включает в себя корпус, который определяет внутренний канал потока текучей среды, а генерирующее импульсы устройство установлено в пределах полости, определенной на внешней поверхности корпуса, так что внутренний канал потока текучей среды остается не загороженным. Элемент 7: который отличается тем, что генерирующее импульсы устройство содержит впускное отверстие, определенное во внутренней стенке корпуса в пределах внутреннего канала потока текучей среды, выпускное отверстие, определенное на внешней поверхности корпуса, внутреннюю линию тока, проходящую между впускным и выпускным отверстиями, и клапан, который расположен на внутренней линии тока и включает в себя клапанный элемент, перемещаемый в осевом направлении в пределах внутренней линии тока, чтобы входить в зацепление и выходить из зацепления с клапанным седлом и тем самым создавать импульсы давления текучей среды. Элемент 8: который отличается тем, что дроссельное устройство содержит корпус, который определяет центральный канал потока и глухое отверстие, наружную втулку, которая надежно закреплена в пределах центрального канала потока и определяет одно или несколько верхних отверстий и одно или несколько нижних отверстий, и внутреннюю втулку, соосно расположенную в пределах наружной втулки и обеспечивающую внутреннюю линию тока, которая вмещает сопло дроссельного устройства и гидравлически сообщается с центральным каналом потока, при этом внутренняя втулка определяет одно или несколько верхних отверстий выше сопла и одно или несколько нижних отверстия ниже сопла и внутренняя втулка надежно прикреплена с возможностью отсоединения к наружной втулке одним или несколькими срезными устройствами, при этом второе значение давления приводит в действие дроссельное устройство из неактивированного положения, когда верхние и нижние отверстия внутренней и наружной втулок, соответственно, являются смещенными, в активированное положение, когда срезные устройства разрушаются и внутренняя втулка перемещается в осевом направлении в пределах наружной втулки для того, чтобы совместить верхние и нижние отверстия внутренней и наружной втулок, соответственно, и таким образом позволить текучей среде проходить как через сопло, так и вокруг сопла путем прохождения через совмещенные верхние и нижние отверстия и глухое отверстие. Элемент 9: который отличается тем, что циркуляционный клапан содержит корпус, который определяет центральный канал потока и одно или несколько радиальных отверстий, наружную втулку, которая надежно закреплена в пределах центрального канала потока и определяет одно или несколько переходных отверстий, внутреннюю втулку, соосно расположенную в пределах наружной втулки и обеспечивающую внутреннюю линию тока, которая вмещает сопло циркуляционного клапана и гидравлически сообщается с центральным каналом потока, при этом внутренняя втулка определяет одно или несколько циркуляционных отверстия и надежно прикреплена с возможностью отсоединения к наружной втулке одним или несколькими срезными устройствами, и при этом третье значение давления приводит в действие циркуляционный клапан из открытого положения, когда циркуляционные и переходные отверстия являются совмещенными и способствуют сообщению текучей среды между внутренней линией тока и пространством за пределами корпуса через одно или несколько радиальных отверстия потока, в закрытое положение, когда срезные устройства разрушаются и внутренняя втулка перемещается в осевом направлении в пределах наружной втулки, чтобы сместить циркуляционные и переходные отверстия и таким образом не допустить сообщения текучей среды между внутренней линией тока и пространством за пределами через одно или несколько радиальных отверстий потока. Элемент 10: который отличается тем, что циркуляционный клапан дополнительно содержит пружину, расположенную в пределах полости для пружины, совместно определенной между наружной и внутренней втулками, причем пружина выполнена с возможностью естественного вынуждения внутренней втулки к совмещению циркуляционных и переходных отверстий.
[0084] Элемент 11: который отличается тем, что ориентирование расположения скважинного инструмента в стволе скважины включает в себя ориентирование по меньшей мере одного из: подвесного устройства для хвостовика спускного инструмента для хвостовика, предварительно выполненного окна, узла сопряжения бокового отверстия, пакера ствола скважины, системы противопесочного фильтра, башмака направляющего инструмента с косым срезом и системы гравийной набивки. Элемент 12: который отличается тем, что активированный давлением инструмент содержит инструмент, выбранный из группы, состоящей из пакера хвостовика, подвесного устройства для хвостовика и пакера ствола скважины. Элемент 13: который отличается тем, что ориентирующее инструмент устройство включает в себя корпус, который определяет внутренний канал потока текучей среды, а генерирующее импульсы устройство установлено в пределах полости, определенной на внешней поверхности корпуса, так что внутренний канал потока текучей среды остается не загороженным, и при этом передача результатов измерений скважинных параметров в позицию на поверхности скважины генерирующим импульсы устройством содержит приведение в действие клапанного элемента, расположенного с возможностью перемещения в пределах внутренней линии тока, проходящей между впускным отверстием, определенным во внутренней стенке корпуса в пределах внутреннего канала потока текучей среды, и выпускным отверстием, определенным на внешней поверхности корпуса, и создания импульсов давления текучей среды, когда клапанный элемент входит в зацепление и выходит из зацепления с клапанным седлом. Элемент 14: который отличается тем, что дроссельное устройство содержит корпус, который определяет центральный канал потока и глухое отверстие, наружную втулку, которая надежно закреплена в пределах центрального канала потока и определяет одно или несколько верхних отверстий и одно или несколько нижних отверстий, и внутреннюю втулку, соосно расположенную в пределах наружной втулки и определяющую одно или несколько верхних отверстий выше и одно или несколько нижних отверстий, и при этом увеличение давления из первого значения до второго значения, чтобы привести в действие дроссельное устройство, содержит набегание текучей среды при втором значении давления на сопло дроссельного устройства, сопло расположено в пределах внутренней линии тока внутренней втулки, которая гидравлически сообщается с центральным каналом потока, прилагая осевую нагрузку на внутреннюю втулку на основании воздействия текучей среды при втором значении давления и таким образом срезая одно или несколько срезных устройств, которые надежно прикрепляют внутреннюю втулку к наружной втулке, и перемещая внутреннюю втулку из первого положения в пределах наружной втулки, когда верхние и нижние отверстия внутренней и наружной втулок, соответственно, являются смещенными, во второе положение, когда верхние и нижние отверстия внутренней и наружной втулок, соответственно, совмещены и позволяют текучей среде проходить как через сопло, так и вокруг сопла путем прохождения через совмещенные верхние и нижние отверстия и глухое отверстие. Элемент 15: который отличается тем, что циркуляционный клапан содержит корпус, который определяет центральный канал потока и одно или несколько радиальных отверстий, наружную втулку, которая надежно закреплена в пределах центрального канала потока и определяет одно или несколько переходных отверстий, и внутреннюю втулку, соосно расположенную в пределах наружной втулки и определяющую одно или несколько циркуляционных отверстий, и при этом прокачивает текучую среду через циркуляционный клапан при третьем значении давления для того, чтобы привести в действие циркуляционный клапан в результате набегания текучей среды при третьем значении давления на сопло циркуляционного клапана, при этом сопло размещено в пределах внутренней линии тока внутренней втулки, которая гидравлически сообщается с центральным каналом потока, прилагая осевую нагрузку на внутреннюю втулку на основании воздействия текучей среды при третьем значении давления, и таким образом срезая одно или несколько срезных устройств, которые надежно прикрепляют внутреннюю втулку к наружной втулке, и передвигая внутреннюю втулку из первого положения в пределах наружной втулки, когда циркуляционные и переходные отверстия являются совмещенными и способствуют сообщению текучей среды между внутренней линией тока и пространством за пределами корпуса через одно или несколько радиальных отверстий потока, во второе положение, когда циркуляционные и переходные отверстия являются смещенными, и таким образом не допускают сообщения текучей среды между внутренней линией тока и пространством за пределами корпуса через одно или несколько радиальных отверстий потока. Элемент 16: который отличается тем, что продвижение скважинной компоновки в ствол скважины включает в себя получение текучих сред ствола скважины в циркуляционный клапан в направлении вверх по стволу скважины и отведение текучих сред ствола скважины в кольцевое пространство, определенное между корпусом и стволом скважины, путем циркуляции текучих сред ствола скважины через совмещенные циркуляционные и переходные отверстия и радиальные отверстия потока. Элемент 17: который отличается тем, что перемещение внутренней втулки из первого положения в пределах наружной втулки во второе положение втулки содержит сжатие пружины в пределах полости для пружины совместно определенной между наружной и внутренней втулками, способ дополнительно содержит уменьшение четвертого значения давления, что таким образом позволяет пружине расширяться и перемещать внутреннюю втулку назад в первое положение, освобождая спускной инструмент для хвостовика от хвостовика, возвращение рабочей колонны и скважинной компоновки в положение на поверхности скважины, и спуск текучей среды из скважинной компоновки через совмещенные циркуляционные и переходные отверстия и одно или несколько радиальных отверстий потока. Элемент 18: который отличается тем, что увеличение давления от первого до второго значения предваряется переключением генерирующего импульсы устройства в режим без импульсов. Элемент 19: дополнительно включающий изменение размера сопла дроссельного устройства и/или циркуляционного клапана и, таким образом, изменение перепада давления, требуемого для приведения в действие дроссельного устройства или циркуляционного клапана.
[0085] В качестве неограничивающего примера типовые комбинации, применимые к А и В, включают: Элемент 6 с Элементом 7; Элемент 9 с Элементом 10; Элемент 15 с Элементом 16; и Элемент 15 с Элементом 17.
[0086] Таким образом описанные системы и способы хорошо адаптированы для достижения упомянутых целей и преимуществ, а также того, что им присуще. Конкретные варианты осуществления, раскрытые выше, являются лишь иллюстративными, поскольку идеи данного изобретения могут быть модифицированы и воплощены различными, но эквивалентными способами, очевидными для специалистов данного уровня техники,, получающих преимущества идей данного изобретения. Кроме того, не предусматривается никаких ограничений для элементов конструкции или конструкции, показанных в данном документе, кроме как описано ниже в формуле изобретения. Поэтому очевидно, что конкретные иллюстративные варианты реализации изобретения, описанные выше, могут быть изменены, объединены или модифицированы, и все такие изменения рассматриваются в рамках объема данного раскрытия изобретения. Системы и способы, иллюстративно описанные в данном документе, соответствующим образом могут быть использованы при отсутствии любого элемента, что конкретно не описано здесь и/или любого необязательного элемента, описанного в данном документе. Хотя композиции и способы описаны в терминах «содержащих», «состоящие» или «включающие в себя» различные компоненты или этапы, композиции и способы также могут «состоять по существу из» или «состоять из» различных компонентов и этапов. Все числа и диапазоны, описанные выше, могут изменяться на некоторую величину. Всякий раз, когда указывается числовой диапазон с нижним пределом и верхним пределом, любое число и любой включенный диапазон, попадающий в пределы диапазона, указывается конкретно. В частности, каждый диапазон значений (в виде «от около а до около b», или, равносильно, «от примерно а до примерно b», или, равносильно, «от примерно а-b»), описанный в данном документе, следует понимать как определяющий каждое число и диапазон, входящие в широкий диапазон значений. Кроме того, термины в формуле изобретения имеют свое простое, обычное значение, если иное явно и четко не определено патентообладателем. Кроме того, неопределенные артикли «а» или «an», используемые в формуле изобретения, определяются в данном документе как означающие один или более элементов, которые он представляет. Если в этом описании есть какой-либо конфликт в использовании слова или термина и одного или нескольких патентных или других документов, которые могут быть включены в данный документ посредством ссылки, должны быть приняты определения, которые согласуются с этим описанием изобретения.
[0087] В контексте данного изобретения, выражение «по меньшей мере один из», предшествующее последовательности наименований, со словами «и» или «или» для отделения любого из этих наименований, изменяет перечисление в целом, а не каждый элемент перечисления (т.е., каждое наименование). Выражение «по меньшей мере один из» допускает значение, включающее по меньшей мере одно из любого одного из наименований, и/или по меньшей мере одно из любой комбинации наименований, и/или по меньшей мере одно из каждого из наименований. Для примера: каждое из выражений «по меньшей мере один из А, В и С» или «по меньшей мере один из А, В или С» относится только к А, только к В или только к С; к любой комбинации А, В и С; и/или по меньшей мере к одному из А, В и С.
[0088] Использование терминов пространственного расположения, таких как выше, внизу, верхний, нижний, восходящий, нисходящий, левый, правый, в направлении вниз по стволу скважины, в направлении вниз по стволу скважины и т.п. используются в отношении иллюстративных вариантов осуществления изобретения, как они изображены на графических материалах, восходящее направление направлено к верхней части соответствующей фигуры, а направление вниз направлено к нижней части соответствующей фигуры, направление вверх по стволу скважины направлено к поверхности скважины, а направление вниз по стволу скважины направлено к забою скважины.
1. Скважинная компоновка, содержащая:
ориентирующее инструмент устройство для ориентирования расположения скважинного инструмента в пределах ствола скважины, при этом ориентирующее инструмент устройство включает в себя функциональный блок с одним или несколькими скважинными датчиками и генерирующее импульсы устройство, причем генерирующее импульсы устройство функционирует с давлением текучей среды при первом значении давления;
дроссельное устройство, которое функционально и гидравлически соединено с ориентирующим инструмент устройством и включает в себя первое сопло, ограничивающее поток текучей среды через дроссельное устройство, при этом дроссельное устройство может быть приведено в действие, чтобы увеличить суммарную площадь потока через дроссельное устройство, путем увеличения давления текучей среды до второго значения давления;
циркуляционный клапан, который функционально и гидравлически соединен с дроссельным устройством и включает в себя второе сопло, ограничивающее поток текучей среды через циркуляционный клапан, при этом циркуляционный клапан может быть приведен в действие давлением текучей среды при третьем значении давления; и
спускной инструмент для хвостовика, который функционально соединен с циркуляционным клапаном, чтобы транспортировать хвостовик и активированный давлением инструмент в ствол скважины, при этом активированный давлением инструмент находится под давлением текучей среды при четвертом значении давления.
2. Скважинная компоновка по п. 1, отличающаяся тем, что первое значение давления меньше второго значения давления, второе значение давления меньше третьего значения давления, а третье значение давления меньше четвертого значения давления.
3. Скважинная компоновка по п. 1, отличающаяся тем, что первое значение давления меньше второго значения давления, второе значение давления такое же, как и третье значение давления, и второе и третье значения давления меньше четвертого значения давления.
4. Скважинная компоновка по п. 1, отличающаяся тем, что скважинный инструмент содержит инструмент, выбранный из группы, состоящей из: подвесного устройства для хвостовика спускного инструмента для хвостовика, предварительно выполненного окна, узла сопряжения бокового отверстия, пакера ствола скважины, системы противопесочного фильтра, башмака направляющего инструмента с косым срезом и системы гравийной набивки.
5. Скважинная компоновка по п. 1, отличающаяся тем, что один или несколько скважинных датчиков выбраны из группы, состоящей из: датчика массы, датчика крутящего момента, датчика гамма-излучения, датчика направления, датчика температуры, датчика давления и импульсного нейтронного инструмента.
6. Скважинная компоновка по п. 1, отличающаяся тем, что активированный давлением инструмент содержит инструмент, выбранный из группы, состоящей из: пакера хвостовика, подвесного устройства для хвостовика и пакера ствола скважины.
7. Скважинная компоновка по п. 1, отличающаяся тем, что ориентирующее инструмент устройство включает в себя корпус, который определяет внутренний канал потока текучей среды, а генерирующее импульсы устройство установлено в пределах полости, определенной на внешней поверхности корпуса, так что внутренний канал потока текучей среды остается не загороженным, при этом генерирующее импульсы устройство содержит:
впускное отверстие, определенное во внутренней стенке корпуса в пределах внутреннего канала потока текучей среды;
выпускное отверстие, определенное на внешней поверхности корпуса;
внутреннюю линию тока, проходящую между впускным отверстием и выпускным отверстием; и
клапан, который расположен на внутренней линии тока и включает в себя клапанный элемент, перемещаемый в осевом направлении в пределах внутренней линии тока таким образом, чтобы входить в зацепление и выходить из зацепления с клапанным седлом, и, таким образом, создавать импульсы давления текучей среды.
8. Скважинная компоновка по п. 1, отличающаяся тем, что дроссельное устройство содержит:
корпус, который определяет центральный канал потока и глухое отверстие;
наружную втулку, которая надежно закреплена в пределах центрального канала потока и определяет одно или несколько верхних отверстий и одно или несколько нижних отверстий; и
внутреннюю втулку, которая соосно расположена в пределах наружной втулки и обеспечивает внутреннюю линию тока, которая вмещает первое сопло и гидравлически сообщается с центральным каналом потока, при этом внутренняя втулка определяет одно или несколько верхних отверстий выше первого сопла и одно или несколько нижних отверстий ниже первого сопла, при этом внутренняя втулка надежно прикреплена с возможностью отсоединения к наружной втулке одним или несколькими срезными устройствами,
при этом второе значение давления приводит в действие дроссельное устройство из неактивированного положения, когда верхние и нижние отверстия внутренней и наружной втулок, соответственно, являются смещенными, в активированное положение, когда срезные устройства разрушаются и внутренняя втулка перемещается в осевом направлении в пределах наружной втулки так, чтобы совместить верхние и нижние отверстия внутренней и наружной втулок, соответственно, таким образом позволяя текучей среде проходить как через первое сопло, так и вокруг первого сопла путем прохождения через совмещенные верхние и нижние отверстия и глухое отверстие.
9. Скважинная компоновка по п. 1, отличающаяся тем, что циркуляционный клапан содержит:
корпус, который определяет центральный канал потока и одно или несколько радиальных отверстий;
наружную втулку, которая надежно закреплена в пределах центрального канала потока и определяет одно или несколько переходных отверстий; и
внутреннюю втулку, которая соосно расположена в пределах наружной втулки и обеспечивает внутреннюю линию тока, которая вмещает второе сопло и гидравлически сообщается с центральным каналом потока, при этом внутренняя втулка определяет одно или несколько циркуляционных отверстий и надежно прикреплена с возможностью отсоединения к наружной втулке одним или несколькими срезными устройствами, и
при этом третье значение давления приводит в действие циркуляционный узел из открытого положения, когда циркуляционные и переходные отверстия являются совмещенными и способствуют сообщению текучей среды между внутренней линией тока и пространством за пределами корпуса с помощью одного или нескольких радиальных отверстий потока, в закрытое положение, когда срезные устройства разрушаются и внутренняя втулка перемещается в осевом направлении в пределах наружной втулки так, чтобы сместить циркуляционные и переходные отверстия, и, таким образом, не допустить сообщения текучей среды между внутренней линией тока и внешним пространством с помощью одного или нескольких радиальных отверстий потока, при этом циркуляционный клапан дополнительно содержит пружину, расположенную в пределах полости для пружины, совместно определенной между наружной и внутренней втулками, причем пружина выполнена с возможностью естественного принуждения внутренней втулки к совмещению циркуляционных и переходных отверстий.
10. Способ ориентации расположения и приведения в действие активированных давлением инструментов, включающий:
продвижение скважинной компоновки в ствол скважины на рабочей колонне, при этом скважинная компоновка включает в себя ориентирующее инструмент устройство, дроссельное устройство, функционально и гидравлически соединенное с ориентирующим инструмент устройством, циркуляционный клапан, функционально и гидравлически соединенный с дроссельным устройством, и спускной инструмент для хвостовика, функционально соединенный с циркуляционным клапаном, для транспортировки хвостовика и активированного давлением инструмента в ствол скважины;
прокачивание текучей среды через рабочую колонну и скважинную компоновку при первом значении давления;
получение результатов измерений скважинных параметров от одного или нескольких датчиков ориентирующего инструмент устройства и передача результатов измерений скважинных параметров в местоположение на поверхности скважины посредством генерирующего импульсы устройства ориентирующего инструмент устройства;
ориентирование расположения скважинного инструмента в пределах ствола скважины на основе результатов измерений скважинных параметров;
увеличение давления текучей среды до второго значения давления для того, чтобы привести в действие дроссельное устройство и, таким образом, увеличить суммарную площадь потока через дроссельное устройство, при этом дроссельное устройство включает в себя первое сопло, ограничивающее поток текучей среды от ориентирующего инструмент устройства через дроссельное устройство;
прокачивание текучей среды через циркуляционный клапан при третьем значении давления для того, чтобы привести в действие циркуляционный клапан, при этом циркуляционный клапан включает в себя второе сопло, ограничивающее поток текучей среды от дроссельного устройства через циркуляционный клапан; и
увеличение давления текучей среды до четвертого значения давления для того, чтобы привести в действие активированный давлением инструмент.