Способ определения избыточной энергии порошковых металлических материалов
Изобретение относится к испытательной технике. Способ включает измерение теплового эффекта окисления материала, при этом тепловой эффект окисления определяют для серии различных навесок материала и графически определяют поправку к тепловому эффекту окисления путем экстраполяции линейного участка зависимости удельного теплового эффекта от величины навески к нулевой навеске. Избыточную энергию определяют как сумму теплового эффекта окисления и поправки к тепловому эффекту за вычетом теплового эффекта реакции окисления металла. Технический результат - увеличение точности определения. 1 ил., 1 табл.
Изобретение относится к области термохимических измерений и может быть использовано как метод определения избыточной энергии порошковых металлических материалов.
Известен способ дифференциально-термического анализа, являющийся инструментальным аналогом заявляемого изобретения (а.с. СССР 1721487, МПК7 G 01 N 25/02, опубл. 08.04.88). Способ заключается в нагреве исследуемого образца и эталона и измерении разности температур между ними. С целью повышения точности анализа при исследовании самовозгорания тонкодисперсных органических веществ измеряют разности температур в центре исследуемого образца и на его поверхности, а затем измеряют разность полученных температур образца и эталона. Недостатком этого способа является усложнение процедуры анализа за счет введения дополнительных измерений, что приводит к увеличению затрат времени на проведение анализа и обработку данных. Наиболее близким по технической сущности к предлагаемому решению является выбранный за прототип способ дифференциально-термического анализа, являющийся ближайшим аналогом заявляемого изобретения (D.E.G. Jones et al., Thermal Characterization of Passivated Nanometer Size Aluminum Powders, Journal of Thermal Analysis and Calorimetry, Vol.61 (2000) 805-818). Способ заключается в том, что образцы по 5 мг исследуемого порошка ультрадисперсного алюминия и эталона помещаются в тигли из оксида алюминия и подвергаются термическому анализу в термоаналитической системе ТА 2100 с модулем SDT 2960, позволяющим одновременно регистрировать изменения массы (кривая TG) и тепловые эффекты при нагревании (кривая DTA). Недостатком данного способа является низкая точность в определении тепловых эффектов окисления ультрадисперсных порошков. Основной технической задачей предлагаемого изобретения является увеличение точности определения тепловых эффектов окисления ультрадисперсных порошков. По сравнению с прототипом предложенный способ позволяет увеличить точность в 1,6 раза. Поставленная техническая задача достигается тем, что в способе определения избыточной энергии порошковых металлических материалов, включающем измерение теплового эффекта окисления материала, согласно предложенному решению тепловой эффект определяют для серии различных навесок материала и графически определяют поправку к тепловому эффекту окисления путем экстраполяции линейного участка зависимости удельного теплового эффекта от величины навески к нулевой навеске, а избыточную энергию определяют как сумму теплового эффекта окисления и поправки к тепловому эффекту за вычетом теплового эффекта реакции. Проведенный заявителем анализ уровня техники позволил установить, что аналоги, характеризующиеся совокупностями признаков, тождественные всем признакам заявляемого способа отсутствуют. Следовательно, изобретение соответствует условию патентоспособности "новизна". Результаты поиска известных решений в данной и смежных областях техники с целью выявления признаков, совпадающих с отличительными от прототипа заявленного изобретения, показали, что они не следуют явным образом из уровня техники. Из определенного заявителем уровня техники не выявлена известность влияния предусматриваемых существенными признаками изобретения преобразований на достижение указанного технического результата. Следовательно, изобретение соответствует условию патентоспособности "изобретательский уровень". Пример конкретного выполнения. На чертеже приведена зависимость теплового эффекта от исходной навески. Для осуществления данного способа были взяты навески по 10



















mкисл - количество связываемого кислорода воздуха, необходимого для образования 1 моля Аl2О3, 0,048 кг. В данном случае стандартный удельный тепловой эффект равен 34,85










где



Формула изобретения
РИСУНКИ
Рисунок 1, Рисунок 2