Способ гирокомпасирования с применением гироскопического датчика угловой скорости при линейном движении объекта
Использование: при создании гирокомпасов и курсоуказывающих устройств аналитического типа. Сущность: при гирокомпасировании с применением гироскопического датчика угловой скорости в условиях линейного движения объекта определяют путевую скорость объекта, находят его высоту, а затем вычисляют угол истинного курса объекта с помощью аналитического выражения, используя информацию о напряжениях с эталонных сопротивлений гироскопа и его дрейфе, об углах наклона плоскости осей чувствительности гироскопа по тангажу и крену, об угловой скорости вращения Земли и широте местоположения объекта. Технический результат: повышение точности гирокомпасирования. 3 ил.
Изобретение относится к области точного приборостроения, преимущественно гироскопического, и может быть использовано при создании гирокомпасов и курсоуказывающих устройств аналитического типа.
Известны способы определения истинного курса с помощью гироскопического датчика угловой скорости (см., например, книгу Назарова Б.И. и Хлебникова Г. А. Гиростабилизаторы ракет. - М., 1975, с.193-196 и патент RU 2098766 С1 по кл. G 01 С 21/14 от 10.12.1997), согласно которым курсовое направление горизонтально расположенной измерительной оси гироскопа на неподвижном основании определяют аналитически с использованием показаний с гироскопа, полученных на разных азимутальных углах. За прототип взят способ определения курса с помощью двухканального гироскопического датчика угловой скорости (см. патент RU 2176708 по кл. G 01 C 21/12 от 10.12.2001). В этом способе определения истинного курса с помощью двухканального гироскопического датчика угловой скорости предварительно привязывают измерительные оси гироскопа к осям, связанным с объектом, применяют гироскоп в режиме обратной связи по току датчика момента, определяют сигналы с эталонных сопротивлений датчика угловой скорости, проводят фазировку системы измерения напряжения с эталонных сопротивлений гироскопа, обеспечивающую отрицательное приращение сигналов с первого и второго каналов гироскопа при азимутальном повороте его корпуса против часовой стрелки на 90 градусов из положения, при котором измерительная ось У первого канала направлена на север, а измерительная ось Х второго канала на восток, определяют коэффициенты модели дрейфа гироскопа, а при гирокомпасировании в искомом курсовом положении объекта определяют углы наклона плоскости измерительных осей гироскопа по тангажу и крену, угол широты местоположения объекта, напряжения с эталонных сопротивлений гироскопа по первому и второму каналам, а затем определяют значение истинного курса измерительной оси первого канала гироскопа по следующей формуле: K = 2











Kн11, Kн12 - крутизна гироскопа по напряжению для первого и второго каналов,





VN = Vcos

VE = -Vsin

Эти составляющие путевой скорости вызовут угловые скорости изменения долготы




Вследствие линейного движения объекта мгновенную угловую скорость







Тогда при наличии углов тангажа












Таким образом, линейное движение объекта с гироскопом относительно сферической Земли обуславливает угловую скорость, действующую по осям гироскопа и являющуюся в данном случае вредной, вызывающей погрешности гирокомпасирования. Оценить эти погрешности можно расчетным путем, используя следующее выражение

где





















Кн11 = Кн12 = 3,5






















R = 6371, 032 км, h = 5 км,
V = 100 км/ч. На фиг.3 зависимостью 1 показана погрешность гирокомпасирования датчика угловой скорости при линейном движении объекта по разным азимутальным направлениям с путевой скоростью 100 км/ч. Эти зависимости показывают, что на разных азимутальных углах линейное движение объекта может обуславливать существенные погрешности гирокомпасирования в известном способе. Техническим результатом, который может быть получен при осуществлении настоящего изобретения, является повышение точности гирокомпасирования с применением гироскопического датчика угловой скорости при наличии линейного движения объекта. Технический результат достигается тем, что в известном способе определения истинного курса с помощью двухканального гироскопического датчика угловой скорости, включающем предварительную привязку измерительных осей гироскопа к осям, связанным с объектом, работу гироскопа в режиме обратной связи по току датчика момента, фазировку сигналов с эталонных сопротивлений с направлением поворота корпуса гироскопа вокруг оси собственного вращения, определение модели дрейфа гироскопа, а при гирокомпасировании определение углов наклона плоскости измерительных осей гироскопа по тангажу и крену, угла широты местоположения объекта, напряжений с эталонных сопротивлений гироскопа по первому и второму каналам, дополнительно при гирокомпасировании определяют путевую скорость объекта, находят его высоту, а затем вычисляют угол истинного курса объекта по следующей формуле:
K = 2

K =

-arctg (a1a2 -1), если a1<0, a2<0;
1a2 -1), если a1<0, a2>0;
где




U11, U12 - напряжения с эталонных сопротивлений датчика угловой скорости соответственно по первому и второму каналам,
Kн11, Kн12 - коэффициенты крутизны гироскопа по напряжению соответственно для первого и второго каналов,




V - путевая скорость объекта,
R - радиус Земли,
h - высота объекта. Схема гирокомпасирования с применением гироскопического датчика угловой скорости при бесплатформенной установке на объекте представлена на фиг.2. При анализе этой схемы рассмотрим несколько систем координат, представленных на фиг.1 и 2. На фиг. 1 показана геоцентрическая навигационная система координат ХнУнZн, сопровождающая система координат Дарбу ХдУдZд, траекторная система координат ХтУтZт и связанная с объектом система координат. На фиг.2 дополнительно показана система координат, связанная с гироскопом Xг1Уг1Zг1. Геоцентрическая система координат XнУнZн связана с Землей, которая принимается за шар, в центре которого расположено начало системы координат. Оси Ун и Zн расположены в плоскости экватора, при этом ось Ун находится на линии пересечения плоскости, образованной Гринвическим меридианом и экватором. Ось Хн направлена по оси вращения Земли. Отсчет геоцентрической широты


U11 = (


U12 = (-


где









Подставив значения


C11cos


C21cos


где C11 =



C12 = -V(R+h)-1tg


C21 =




C22 =






d1 = U11Kн11-




d2 = -U12Kн12+






Решая уравнение (10), определяем выражение для cos




где


При использовании функции тангенса квадрант, в котором расположен азимутальный угол



K = 2

K =

-arctg (a1a2 -1), если a1<0, a2<0;
1a2 -1), если a1<0, a2>0. Таким образом, предлагаемый способ гирокомпасирования с применением гироскопического датчика угловой скорости при линейном движении объекта имеет следующие отличия от известного способа:
- в операции гирокомпасирования введены новые действия по определению путевой скорости и высоты объекта,
- определение угла истинного курса объекта производится по новой аналитической зависимости, в которой используется новая информация о путевой скорости и высоте объекта. На фиг.1 показано взаимное расположение систем координат. На фиг. 2 показана схема гирокомпасирования с применением гироскопического датчика угловой скорости при бесплатформенной установке на объекте. На фиг.3 показана погрешность гирокомпасирования с применением гироскопического датчика угловой скорости при линейном движении объекта по разным азимутальным направлениям с путевой скоростью 100 км/ч. Проводились теоретические исследования точности гирокомпасирования с применением гироскопического датчика угловой скорости в условиях линейного движения объекта. Численные исследования выполнялись с использованием предложенного аналитического выражения (11), в котором присутствует алгоритмическая компенсация вредных угловых скоростей, обусловленных его линейным движением. При расчетах погрешностей гирокомпасирования использовалось выражение (6) и брались следующие значения параметров и ошибок их задания:


Кн11 = Кн12 = 3,5






















R = 6371, 032 км, h = 5 км,
V = 100 км/ч. На фиг. 3 зависимостью 2 показана погрешность гирокомпасирования от путевой скорости с применением предлагаемого способа. Из сравнения зависимостей 1 и 2, представленных на фиг.3, видно, что при применении предлагаемого способа погрешность гирокомпасирования, обусловленная линейным движением объекта, значительно меньше, чем в случае применения известного способа. Таким образом, использование предлагаемого способа позволяет существенно повысить точность гирокомпасирования при линейном движении объекта. Применение предлагаемого способа позволяет расширить область применения гирокомпасных устройств на основе гироскопического датчика угловой скорости за счет возможности определения курса объекта при его линейном движении.
Формула изобретения
К = 2

К =

-arctg(a1a2 -1), если a1<0, a2<0;
1a2 -1), если a1<0, a2>0;
где




U11, U12 - напряжения с эталонных сопротивлений датчика угловой скорости соответственно по первому и второму каналам;
Кн11, Кн12 - коэффициенты крутизны гироскопа по напряжению соответственно для первого и второго каналов;




V - путевая скорость объекта;
R - радиус Земли;
h - высота объекта.
РИСУНКИ
Рисунок 1, Рисунок 2, Рисунок 3