Ионные жидкости в качестве растворителей
Изобретение относится к регенерации облученного топлива и растворению оксидов металлов. Результат изобретения: создание нового способа растворения любых топлив. Металл находится в степени окисления, которая ниже его максимальной степени окисления. Ионная жидкость реагирует с металлом и окисляет его до более высокой степени окисления. Первоначально металл может быть в форме соединения. Металл - это облученное ядерное топливо, содержащее UO2 и/или PuO2, а также продукты расщепления. Ионной жидкостью является жидкость на нитратной основе, например, пиридиний или замещенный имидазолий нитрат. Она содержит кислоту Бренстеда или кислоту Франклина для повышения окисляющей способности нитрата. Пригодными кислотами являются HNO3, H2SO4 и [NO+]. 17 з.п.ф-лы, 7 табл.
Изобретение относится к регенерации облученного топлива, а также к способу растворения оксидов металлов в ионных жидкостях и к новым продуктам или композициям, включающим ионные жидкости.
Облученное топливо может представлять собой топливо, которое образуется, например, в результате использования топливных элементов в реакторах на легкой воде (LWR). Ниже будут сделаны ссылки на такое топливо, однако следует понимать, что изобретение не ограничивается этим и может быть применено для регенерации любого особого типа облученного топлива. Облученное топливо из LWR расположено внутри Циркалоевых оболочек, которые окисляются в результате облучения. В известном способе регенерации облученного топлива PUREX первая стадия включает разрубание и разрезание топливных стержней так, чтобы именно облученное топливо само по себе могло быть растворено в азотной кислоте. Известно использование в качестве растворителей расплавов солей, и они могут быть предположительно использованы для регенерации облученного топлива из LWRs. Эти расплавы солей, обычно, представляют собой смеси солей, которые находятся в жидком состоянии только при высоких температурах и имеют незначительные преимущества при использовании в качестве растворителей перед водными или органическими средами. В последнее время стали известны соли, смеси солей или смеси компонентов, которые образуют соли, плавящиеся ниже или чуть выше комнатной температуры (по определению в данном изобретении соль состоит полностью из катионов и анионов). Такие жидкости известны как "ионные жидкости, хотя этот термин может быть использован для солей, плавящихся при относительно высоких температурах, включая, например, температуры до 100oС. Общие свойства ионных жидкостей включают нулевое давление паров при комнатной температуре, высокую растворяющую способность и большой диапазон температуры нахождения в жидком состоянии (например, порядка 300oС). Известные ионные жидкости включают хлорид алюминия (III) в комбинации с галогенидами имидазолия, пиридиния или фосфония. Примеры включают 1-этил-3-метилимидазолий хлорид, N-бутилпиридиний хлорид и тетрабутилфосфоний хлорид. Примером известной ионной жидкой системы является смесь 1-этил-3-метилимидазолий хлорида и хлорида алюминия (III). E.S. Lane (J. Chem. Soc., 1953, 1172-1175) описал получение некоторых алкилпиридиний нитратных ионных жидкостей, включая втор-бутилпиридиний нитрат. Сведений об использовании жидкостей не приводилось, однако были сделаны ссылки на фармакологическую активность декаметилен-бис-пиридиний нитрата. L. Heerman et al. (J. Electroanal. Chem., 1985, 193, 289) описывает растворение UО3 в системе, включающей N-бутилпиридиний хлорид и хлорид алюминия (III). В WO 96/32729 раскрывается, что оксидные ядерные топлива могут быть растворены в расплавах карбонатов щелочных металлов с образованием соединений, которые могут быть в дальнейшем переработаны так, чтобы выделить из них уран. WO 95/21871, WO 95/21872 и WO 95/21806 относятся к ионным жидкостям и к их использованию в катализе реакций конверсии углеводородов (например полимеризации или олигомеризации олефинов) и реакций алкилирования. Ионные жидкости представляют собой, предпочтительно, 1-(С1-С1 алкил)-3-(C6-C30 алкил)имидазолий хлориды и, особенно, 1-метил-3-С10 алкилимидазолий хлорид или 1-гидрокарбилпиридиний галогенид, в котором гидрокарбильная группа представляет собой, например, этил, бутил или другой алкил. Настоящее изобретение обеспечивает в своем первом аспекте использование содержащей окислитель ионной жидкости для растворения металла необязательно в форме его соединения. Окислитель окисляет металл до более высокой степени окисления, при которой металл становится обычно более растворимым в ионных жидкостях по сравнению с металлом в его первоначальной степени окисления. В особенности, обеспечивается способ первоначальной степени окисления. В особенности, обеспечивается способ растворения в ионной жидкости металла, находящегося в начальной степени окисления, которая ниже его максимальной степени окисления, при этом способ характеризуется тем, что ионная жидкость реагирует с металлом и окисляет его до более высокой степени окисления. При использовании в данном описании под термином "металл" подразумевают не только металлические элементы в (0) степени окисления, но также и металлы в степени окисления выше нуля, связанные с другими элементами, например U(IV) и U(VI). Таким образом металл в его первоначальной степени окисления может представлять соединение металла, например оксид металла. Описываемый металл представляет собой уран (в виде UO2), или плутоний (в виде РuО2), или оба и, обычно, продукты расщепления. UO2 или PuO2 не растворяются прямо в окисляющей ионной жидкости, а сначала оксид реагирует с ионной жидкостью с образованием окисленного продукта, который растворяется в ионной жидкости. Такие предпочтительные процессы растворения могут быть использованы в регенерации облученного ядерного топлива. Используемая ионная жидкость может содержать не только один анион и один катион, но в дополнение другой компонент, усиливающий способность жидкости реагировать и окислять субстрат. При предпочтительном осуществлении изобретения жидкость содержит как мягкий окисляющий анион [NO3 -], так и кислоту, которая может быть кислотой Бренстеда или Франклина, такой как HNO3, Н2SO4 или [NO+], например из [NO][BF4]. Кислота делает жидкость более способной к окислению таких субстратов, как UO2 и РuО2. Ионная жидкость включает нитрат-анион и органический катион, особенно азотсодержащие гетероциклы, включающие четвертичный азот, такие как, например, пиридиниевый или замещенный имидазолиевый ионы. Типичные ионные жидкости включают 1-бутилпиридиний нитрат, 1-октилпиридиний нитрат, 1-бутил-3-метилимидазолий нитрат, 1-гексил-3-метилимидазолий нитрат и 1-октил-3-метилимидазолий нитрат. Изобретение включает также использование способа регенерации облученного топлива ионной жидкостью для растворения топлива, также как и способы регенерации, которые включают стадию растворения топлива в ионной жидкости. Процесс растворения ведут при температуре от 50 до 100oС. Растворитель Растворитель включает ионную жидкость, которая, обычно, содержит агент или частицы, придающие растворителю способность окислять между прочим выбранные субстраты, хотя присутствие этого агента не является необходимым в случае всех аспектов изобретения (как объяснено ниже в разделе под заголовком "Металл"). Агент может быть окислителем, растворенным в неокисляющей жидкости или дополнительным агентом для повышения окисляющей способности других окисляющих частиц. Если растворитель содержит нитрат ионы, агент повышает окисляющую способность растворителя сверх той, которую должны обеспечивать сами по себе нитрат ионы; как описано выше, такие агенты включают кислоты Бренстеда и Франклина. Растворитель, в принципе, может включать любую ионную жидкость, но эта жидкость, обычно, содержит нитрат анионы. Катион, на практике, может включать один или более органических катионов, особенно азотсодержащие гетероциклы, содержащие четвертичный азот, в особенности N-замещенный пиридиний или N,N'-дизамещенный имидазолий. Заместители представляют собой, предпочтительно, гидрокарбилы и, более предпочтительно, алкилы, которые, например, могут быть разветвленными. Гидрокарбильные (например, алкильные) группы обычно содержат от 1 до 18 углеродных атомов и более обычно содержат от 1 до 8 атомов. Катион, таким образом, может быть ионом дизамещенного имидазолия, в котором заместители имеют формулу CnH2n+1, где 1 n 8, и являются линейными или разветвленными. В предпочтительных дизамещенных ионах имидазолия один заместитель имеет n=1, 2 или 3 (из которых метил особенно предпочтителен) и другой имеет n= 4, 5, 6, 7 или 8 (из которых октил, гексил и, предпочтительно, С4, особенно бутил, являются предпочтительными). Линейные группы предпочтительны. Альтернативно катион может быть замещенным пиридиниевым ионом, в котором замещающая группа также имеет формулу CnH2n+1, где 1 n 8, и является линейной или разветвленной; подходящими заместителями являются бутил, 2-(2-метил)пропил, 2-бутил и октил, однако линейные алкилы, особенно бутил, являются предпочтительными. Конечно, незначительные количества примесей могут присутствовать, например, метилимидазолия в 1-бутил-3-метилимидазолии. Из описанного выше можно заключить, что ионные жидкости могут иметь нитратную основу, например, иметь нитрат в качестве аниона. Ионные жидкости, содержащие нитрат, являются новыми и включены в изобретение за исключением некоторых алкилпиридиниевых нитратов и полиметилен-бис-(пиридиний нитрат)соединений, раскрытых Lane. Новым также является использование нитратсодержащих ионных жидкостей в качестве реакционной среды или растворителя. Ионная жидкость по данному изобретению включает нитрат и катионный компонент, который не является только алкилпиридиний нитратом или полиметилен-бис-(пиридиний нитратом). Однако 1-бутилпиридиний нитрат является особенно предпочтительной ионной жидкостью, которая является новой и, также, включена в изобретение. Продукты, включающие новые ионные жидкости, составляют предмет данного изобретения. Новые ионные жидкости на нитратной основе могут быть получены смешиванием водного нитрата серебра (I) с соответствующим органическим галогенидом. В виде примера одна такая жидкость получена смешиванием растворов водного нитрата серебра (I) и 1-бутил-3-метилимидазолий хлорида (bmim). Хлорид серебра выпадает в осадок и образуется жидкость 1-бутил-3-метилимидазолий нитрат:

mim:метилимидазолий
Oct:октил
ру:пиридиний
Сокращения в 1Н я.м.р. s:синглет
d:дублет
t:триплет
quin:пентаплет
sex:гексаплет
m:мультиплет
br:широкий
Пример 1
Реактивы
Твердый UO2 от фирмы BNFL. UO2(NO3)2

УФ - видимые спектры сняты в кювете, имеющей ширину 1 мм и кварцевые окна, для сравнения использовали соответствующую чистую ионную жидкость. Инфракрасные спектры сняты в тонких пленках с использованием пластинок NaCl. Получение нитратных ионных жидкостей
Все нитратные ионные жидкости готовят по аналогии со способом, в соответствии с которым получают 1-бутил-3-метилимидазолий нитрат. 1-Бутил-3-метилимидазолий хлорид (8,04 г, 46,0 ммол) растворяют в воде (15 см3). К этому раствору прибавляют раствор нитрата серебра (1) (7,82 г, 46,0 ммол) в воде (20 см3). Немедленно образуется белый осадок (возможно хлорида серебра (1)). Смесь перемешивают (20 мин) для того, чтобы убедиться в завершении реакции, после чего фильтруют дважды через Р 3 стеклянный фильтр для того, чтобы отделить белый осадок (второе фильтрование обычно необходимо для удаления следов осадка). Воду удаляют на роторном испарителе, при этом остается вязкая желтая или коричневая жидкость, иногда со следами маленьких черных твердых частиц. Неочищенный продукт, 1-бутил-3-метилимидазолий нитрат, растворяют в небольшом количестве сухого ацетонитрила, после чего для обесцвечивания к раствору добавляют древесный уголь. Реакционную массу перемешивают (30 мин) и фильтруют через Celite

Получение [NO][BF4]:[Bu-py][NO3] в соотношении 1:10
При перемешивании к 1-бутилпиридиний нитрату (2,258 г, 11,4 ммол) прибавляют нитроний тетрафторборат (III) (0,121 г, 1,03 ммол). При первоначальном прибавлении вокруг твердых частиц [NO][BF4] наблюдается зеленое окрашивание, которое тем не менее исчезает, после того как смесь перемешивают в течение двух дней. Кроме того, наблюдается выделение бурого газа. Инфракрасный спектр с очевидностью демонстрирует удаление воды из ионных жидкостей с помощью [NO][BF4]. Пример 3
Получение [NO][BF4]:[Bu-py][NO3] в соотношении 1:2
При перемешивании к 1-бутилпиридиний нитрату (3,000 г, 15,1 ммол) прибавляют нитроний тетрафторборат (III) (0,910 г, 7,8 ммол). Немедленно появляется бурый дым, и раствор быстро приобретает темный зелено-голубой цвет. После перемешивания в течение ночи весь [NO][BF4] растворяется с образованием зелено-голубого раствора, который значительно менее вязок, чем исходный материал, 1-бутилпиридиний нитрат (см. табл.7). Пример 4
Растворение UO2 в смеси нитратная ионная жидкость:азотная кислота 1:1
Приготавливают смесь 1-бутилпиридиний нитрата и концентрированной азотной кислоты в мольном соотношении 1:1, из которой удаляют на роторном испарителе как можно больше воды. К 0,5 см3 этого раствора прибавляют UO2 (приблизительно 0,01 г) и вначале смесь перемешивают (2 часа) при комнатной температуре без видимых признаков реакции. Затем ее нагревают (от 80 до 90oС, 6 часов), и в это время раствор становится желтым при почти полном растворении UO2. УФ - видимый спектр раствора продукта демонстрирует полосу с тонкой структурой, имеющей центр при

Растворение UO2 в [NO][BF4]:[Bu-py][NO3] 1:10. UO2 (0,02 г, 0,074 ммол) прибавляют к смеси [NO][BF4]:[Bu-py][NO3] 1:10 (1,656 г). Перемешивание при комнатной температуре не приводит к изменению цвета смеси (бледно-желтый), поэтому смесь нагревают (90oС, 5 часов). На этой стадии большая часть UO2 уже растворена, и раствор приобрел более интенсивно желтый цвет. На этой стадии прибавляют еще порцию UO2 (0,101 г, 0,37 ммол) к реакционной смеси и продолжают нагревание (100oС, 48 часов). К концу этого времени останется небольшое количество нерастворенного UO2, но раствор имеет интенсивно желтый цвет. УФ - видимый спектр показывает полосу с тонкой структурой, имеющей центр при

Растворение UO2 в [NO][BF4]:[Bu-py][NO3] 1:2
UO2 (0,059 г, 0,22 ммол) прибавляют к смеси [NO][BF4]:[Bu-py][NO3] 1:2 (2,45 г) в атмосфере азота, чтобы исключить любое попадание влаги. Смесь нагревают (приблизительно при 65oС, 16 часов) после чего весь черный UO2 оказывается растворенным и образуется желтый раствор. Дополнительно прибавляют к раствору UO2 (1,140 г, 0,52 ммол) и нагревание продолжают ( приблизительно 65oС, 44 часа). В конце этого времени раствор становится интенсивно желтым, но при этом тем не менее остается нерастворенным некоторое неопределенное количество UO2. Вновь УФ - видимый спектр и инфракрасный спектр четко подтверждают наличие комплексного иона [UO2]+2.
Формула изобретения
РИСУНКИ
Рисунок 1, Рисунок 2, Рисунок 3, Рисунок 4, Рисунок 5