Измерительный преобразователь
Техническое решение может быть использовано для прецизионного измерения токов, напряжений, мощности и электроэнергии в электросетях, в автоматизированных системах контроля и учета электроэнергии, а также в приборах и аппаратуре энергосбережения. Технический результат применения предлагаемого решения заключается в повышении точности и скорости измерений, а также в расширении функциональных возможностей измерительного преобразователя в широком диапазоне частот измеряемого тока или напряжения. Измерительный преобразователь тока и напряжения представляет собой систему автоматического регулирования выходного сигнала, обеспечивающую минимизацию воздействия дестабилизирующих факторов и автокалибровку нуля в заданные интервалы времени. 2 ил.
Предлагаемое техническое решение относится к электроизмерительной технике и может быть использовано для прецизионного измерения амплитуды постоянного и переменного тока, а также во всех видах счетчиков электроэнергии и в автоматизированных системах контроля, управления и распределения электроэнергии.
Увеличение скорости прецизионного измерения постоянного и переменного тока и напряжения с большим динамическим диапазоном измерения амплитуд является в настоящее время одной из актуальных задач метрологии. Для этой цели в настоящее время широко используются различные датчики-преобразователи амплитуды постоянного и переменного тока или напряжения в частоту следования нормированных по амплитуде импульсов, выполненные на основе различного вида мультивибраторных магнитных датчиков и магнитных модуляторов. Например, в работе [1] рассматриваются принципы построения магнитных мультивибраторных датчиков относительно малых постоянных токов с одновитковыми входными обмотками. Приводятся результаты исследования датчиков с различными переключающими элементами. Также широко известны датчики тока на основе магнитных модуляторов [2-6] , в которых на одну из вторичных обмоток подается опорное напряжение высокочастотного возбуждения и, по изменению его параметров в измерительной обмотке, судят о величине тока, протекающего через первичную обмотку. Недостаток вышеперечисленных датчиков заключается в наличии незначительной паразитной модуляции по длительности, если входное воздействие преобразуется в частотно-импульсное модулированное (ЧИМ) напряжение, и по частоте, если входное воздействие преобразуется в широтно-импульсное модулированное (ШИМ) напряжение, которая приводит к ошибке измерения, что препятствует широкому внедрению таких устройств. Наиболее близким к предлагаемому измерительному преобразователю является устройство для бесконтактного измерения тока [7], содержащее магнитный модулятор на ферромагнитном сердечнике, входная обмотка которого соединена с источником измеряемого тока, обмотка возбуждения соединена с выходом генератора, сигнальная обмотка соединена с входом реверсивного триггера, выход которого через интегратор соединен с входом усилителя, выход которого через образцовый резистор соединен с компенсационной обмоткой модулятора. Модификация такого устройства приведена в [8]. Наибольшей точностью и простотой реализации обладают устройства измерения тока, в которых используется ЧИМ преобразование, однако ШИМ преобразование наиболее удобно для цифровой обработки сигналов, так как современные контроллеры и процессоры сигналов могут работать с ШИМ сигналами напрямую, без дорогостоящего промежуточного аналого- цифрового преобразования. Следовательно, введение в такие устройства операции преобразования ЧИМ в ШИМ является необходимым и оптимальным решением. Технический результат предлагаемого решения заключается в повышении точности и скорости измерений токов и напряжений и в расширении функциональных возможностей измерительного преобразователя. Указанный результат достигается тем, что в измерительный преобразователь, содержащий датчик-преобразователь тока или напряжения в частотно-модулированные импульсы напряжения, выполненный на ферромагнитном трансформаторе, в котором токовая обмотка соединена с токоограничивающим резистором, обмотка обратной связи, обмотка подмагничивания соединена с источником тока подмагничивания, а обмотка возбуждения соединена с времязадающими входами генератора, выход которого является выходом датчика-преобразователя тока и напряжения, дополнительно введен широтно-импульсный преобразователь, в который входит счетчик- делитель на "n", счетный вход которого соединен с выходом упомянутого генератора, а вход разрешения счета соединен с инверсным выходом асинхронного триггера, вход обнуления и установочный входы которого соединены соответственно с выходом счетчика-делителя на "n" и с выходом управляемого напряжением генератора, управляющий вход которого соединен с выходом устройства "выборка-запоминание", сигнальный вход которого соединен с выходом демодулятора, дифференциальные входы которого соединены с парафазными выходами асинхронного триггера, выходы которого и выход демодулятора являются выходами измерительного преобразователя, при этом выход демодулятора соединен с сигнальным входом выполненного регулируемым усилителя, управляющий вход которого соединен с аналоговым выходом калибратора, импульсный выход которого соединен с управляющим входом устройства "выборка- запоминание", кроме того калибратор имеет вход для переключения внешнего источника команд или синхронизации. Сущность предлагаемого технического решения заключается в том, что, для достижения наилучших метрологических характеристик и расширения функциональных возможностей, известный датчик- преобразователь тока или напряжения в частотно-модулированные импульсы напряжения дополнен широтно-импульсным преобразователем (ШИП), демодулированное напряжение которого используется для автоматической калибровки нуля и для отрицательной обратной связи (ООС), необходимых для обеспечения высокой точности и расширения динамического диапазона измеряемого тока или напряжения. Сравнение предлагаемого решения с известными показывает, что оно обладает новой совокупностью существенных признаков, которые, дополняя известные признаки, позволяют успешно реализовать поставленную цель. На фиг. 1 приведена структурная схема измерительного преобразователя, а на фиг. 2 - эпюры напряжений в основных его точках. Измерительный преобразователь содержит входные зажимы 1, 2, 3 и 24, ферромагнитный сердечник 4, токовую обмотку 5, компенсационную обмотку 6, обмотку 7 подмагничивания, обмотку возбуждения 8, резистор 9, генератор 10, источник 11 тока подмагничивания, широтно-импульсный преобразователь 12, содержащий счетчик-делитель на "n" 13, асинхронный триггер 14, демодулятор 15, устройство 16 "выборка-запоминание", управляемый напряжением генератор 17, калибратор 18, а также регулируемый усилитель 19 и выходные зажимы 20, 21, 22 и 23. Предлагаемый измерительный преобразователь (ИП) работает следующим образом: Входной ток Iвх, создаваемый в токовой обмотке 5 источником тока через зажимы 1 и 2 или источником напряжения через зажимы 1 и 3 и резистор 9, создает в ферромагнитном сердечнике 4 соответствующее его величине и знаку магнитное поле, которое изменяет магнитную проницаемость сердечника 4 пропорционально степени его намагничивания. Изменение магнитной проницаемости приводит к изменению величины индуктивности катушки возбуждения 8, являющейся времязадающей цепью генератора 10 частотно-модулированных нормированных по амплитуде импульсов напряжения. Если частота следования выходных импульсов генератора 10 изменяется в больших пределах на несколько порядков, то прецизионная демодуляция таких сигналов представляет определенную трудность, избежать которой можно путем преобразования частотной модуляции в широтную модуляцию с постоянной частотой следования нормированных по амплитуде импульсов. Для работы с двуполярными сигналами и определения их знака производится постоянное подмагничивание сердечника 4 от источника тока подмагничивания, выходной ток которого пропускается через обмотку подмагничивания 7. Для расширения динамического диапазона входных сигналов, улучшения линейности амплитудно-частотной характеристики и для уменьшения фазовой ошибки измерений, через обмотку обратной связи 6 пропускается ток ООС регулируемого усилителя (РУ) 19. В предлагаемом включении эту задачу выполняют элементы широтно-импульсного преобразователя 12 и происходит это следующим образом. Выходные импульсы напряжения генератора 10 поступают на счетный вход счетчика-делителя 13 на "n" (далее по тексту просто счетчик), при этом на вход "Установка в 0" счетчика поступают высокие или низкие уровни напряжения с асинхронного триггера 14 (далее по тексту просто триггер), обеспечивающие стартстопный режим счета импульсов. Общая синхронизация всего процесса преобразования частотно-модулированных импульсов в широтно-модулированные осуществляется управляемым напряжением генератором (ГУН) 17. Передний фронт формируемых ГУН 17 импульсов (фиг. 2, а) является командой "Старт", по которой на прямом выходе триггера 14 устанавливается высокое, а на инверсном низкое состояние, что позволяет счетчику 13 начать отсчет импульсов. Передний фронт "n"-го импульса (фиг. 2, б) счетчика 13 является командой "Стоп", по которой меняется состояние триггера 14, останавливается счет и обнуляется счетчик 13. Затем снова следует команда "Старт" и процесс повторяется. В результате на выходе триггера 14 (фиг. 2, в) формируются широтно-модулированные импульсы напряжения с периодом T, равным периоду импульсов на выходе ГУН 17, и длительностью импульсов
























Формула изобретения
Измерительный преобразователь, содержащий датчик-преобразователь тока или напряжения в частотно-модулированные импульсы напряжения, выполненный на ферромагнитном трансформаторе, в котором токовая обмотка соединена с токоограничивающим резистором, компенсационная обмотка соединена с выходом усилителя напряжения обратной связи, обмотка подмагничивания соединена с источником тока подмагничивания, а обмотка возбуждения соединена с времязадающими входами генератора, выход которого является выходом датчика-преобразователя тока и напряжения, отличающийся тем, что дополнительно введен широтно-импульсный преобразователь, в который входит счетчик-делитель на n, счетный вход которого соединен с выходом упомянутого генератора, а вход разрешения счета соединен с инверсным выходом асинхронного триггера, вход обнуления и установочный входы которого соединены соответственно с выходом счетчика-делителя на n и с выходом управляемого напряжением генератора, управляющий вход которого соединен с выходом устройства "выборка-запоминание", сигнальный вход которого соединен с выходом демодулятора, дифференциальные входы которого соединены с парафазными выходами асинхронного триггера, выходы которого и выход демодулятора являются выходами измерительного преобразователя тока или напряжения, при этом выход демодулятора соединен с сигнальным входом выполненного регулируемым усилителя, управляющий вход которого соединен с аналоговым выходом калибратора, импульсный выход которого соединен с управляющим входом устройства "выборка-запоминание", кроме того, калибратор имеет вход для подключения внешнего источника команд или синхронизации.РИСУНКИ
Рисунок 1, Рисунок 2NF4A Восстановление действия патента
Дата, с которой действие патента восстановлено: 20.01.2012
Дата публикации: 20.01.2012