Способ получения 5-алкоксипентанонов-2
Изобретение относится к способу получения 5-алкоксипентанонов-2 формулы СН3СО(СН2)3OR, где R = СnН2n+1, n = 1-10, взаимодействием ацетилциклопропана (АЦП) с одноатомным спиртом R-OH в присутствии палладийсодержащего катализатора в водной в присутствии исходного спирта R-OH в качестве растворителя или водно-эфирной среде при температуре 165-200°С в течение 6-60 ч при мольном соотношении компонентов: [АЦП]:[R-ОН]:[Н2O]:[кат]:[растворитель] = 1:1: (3-8) : (0,005-0,01) : (2-9), где при R = CnH2n+1 (n = 1-3) растворитель - соответствующий спирт, а при n 4 растворитель - диэтиловый эфир. Способ обеспечивает выход продуктов 43-97%, при небольшом расходе катализатора, исключает токсичные отходы. 4 табл.
Предлагаемое изобретение относится к области органического синтеза, в частности к способу получения 5-алкоксипентанонов-2 общей формулы CH3CO(CH2)3OR, где R = CnH2n+1(n=1-10).
5-алкоксипентаноны-2 используются в парфюмерии, представляют интерес как платификаторы полимерных материалов и как синтоны при получении пиридинов, природных соединений и их аналогов, например, феромонов насекомых (Пат. США 3.316.305 [1]; A.H. Tracy, R.C. Elderf., J.Org, Chem., 1941, V.pp.63-69 [2]; Пат. США N 3278599 [3];). Известны различные способы получения 5-алкоксипентанонов-2, но нет универсального метода, позволяющего получать 5-алкоксипентаноны-2, отличающиеся природой заместителя в алкоксигруппе. Так, 5-метоксипентанон-2 (1) был синтезирован окислением 1-метоксипентана (2) озоном в присутствии сверхкислоты HF-SbF5, играющей роль катализатора (N. Yoneda, T. Kinchi, T. Furukara, A. Suzuki, G.A. Olah J. Chem Lett 1984, N 9, 1617-1618 [4]). В типичном эксперименте поток кислорода, содержащий 2,5% озона (0,29 ммоль/мин), пропускают через раствор 1-метоксипентана (2) в HF-SbF5 (мольное соотношение SbF5/(2) = 5) при -40oC в течение 90 мин.






По ряду причин этот метод представляет лишь препаративную ценность. Во-первых, весьма труднодоступным является 4-бензилоксибутиронитрил. Для получения второго реагента CH3MgBr необходим газообразный бромистый метил. Наряду с этим обе реакции (1-стадия - синтез CH3MgBr в среде серного эфира и получение (14)- II стадия) требуют использования в качестве среды серного эфира, не содержащего следов влаги и перекисей. Процесс в целом является пожароопасным. 5-метоксипентанон-2 (1) с низким выходом (13%) был получен в сложной смеси продуктов при окислении 4-пентен-1-ола (16) золотохлористоводородной кислотой в среде метанола при кипячении в течение 24 ч (R.C. Norman, W.J. Parr, C.B. Thomas. J. Chem. Soc., Perkin Trans., 1976, Part 1, N 7, 811-817 [10]).


В этой же работе [10] описан метод получения (1) реакцией 5-хлорпентанона-2 (20) с метанолом и избытком нитрата серебра (64oC, 4 ч, выход (1) не указан).

Оба эти способа имеют общие недостатки:
1. Использование дорогостоящих катализаторов и реагентов: HAuCl4 и AgNO3 и большие нормы их расхода ([HAuCl4]:[олефин]=1:3, а нитрат серебра необходим для реакции в 2-кратном избытке к 5-хлорпентанону-2). 2. Низкий выход целевого продукта - 13%. 3. Образование большого количества побочных продуктов, что создает трудности при выделении 5-метоксипентанона-2 (1). По сходству двух признаков: 1) использование спиртов в качестве исходного реагента и 2) использование катализатора данный способ взят нами за прототип. Авторами предлагается новый каталитический одностадийный метод получения 5-алкоксипентанонов-2. CH3CO(CH2)3OR, где R=CnH2n+1(n=1-10). Сущность метода заключается в алкоголизе ацетилциклопропана [АЦП] с помощью спиртов под действием Pd-содержащего катализатора в водной (для низших) и водно-эфирной (для высших) спиртов среде. В ходе реакции под действием Pd-содержащего катализатора происходит региоселективное раскрытие трехуглеродного цикла по связи C1-C2 ацетилциклопропана спиртами с образованием 5-алкоксипентанонов-2.

R= CH3, C2H5, C3H7, n-C4H9, n-C5H11, 3-C5H11, C6H13, C10H23, PhCH2, PhCH-CH3. Реакция катализируется следующими солями палладия PdCl2, Na2PdCl4, K2PdCl4, PdCl2[P(Ph)3] 2 и палладием на угле Pd/C 5%, взятыми в количестве 0,005-0,01 моль по отношению к 1 молю ацетилциклопропана (см. табл. 1). Из экспериментальных данных найдено, что оптимальное мольное соотношение реагентов составляет: [АЦП]:[R-OH]:[H2O][катализатор]:[растворитель]= 1:1:(3-8)(0,005: 0,01): (1:3), см. табл. 2, где для низших спиртов R=CnH2n+1(n=1-3) растворителем является сам спирт, а для высших спиртов R=CnH2n+1, n

1. Одностадийность. 2. Высокий выход 5-алкоксипентанонов-2. 3. Простота аппаратурного оформления. 4. Возможность использования спиртов и воды (среда) без дополнительной очистки. 5. Метод является универсальным и позволяет получать большой ассортимент кетоэфиров, отличающихся заместителем в алкокси-группе. 6. Небольшой расход катализатора. 7. Отсутствие токсичных отходов. Способ поясняется примерами:
Пример 1. Получение 5-метоксипентанона-2. В микроавтоклав (V= 17 см3) поместили 0,46 г (5,5 ммоля) ацетилциклопропана, 1,59 г (49,8 ммоля) метанола, 0,0053 г (0,03 ммоля) PdCl2, 0,5 г (28 ммолей) воды. Герметично закрытый автоклав нагревали при 180oC 30 ч. Выход C6H12O2 97%.

Пример 2. Получение 5-бутоксипентанона-2. В микроавтоклав (V= 17 см3) поместили 2,0 г (23 ммоля) ацетилциклопропана, 1,7 г (23 ммоля) бутилового спирта, 0,021 г (0,12 ммоля) PdCl2, 2,6 г (150 ммолей) воды и 3,7 г (50 ммолей) диэтилового эфира. Герметично закрытый автоклав нагревали при 180oC 6 ч. Получен CH3CO(CH2)3-O-(CH2)3CH3 с выходом 60%.

Строение полученных соединений (1, 11, 13, 23-25, 27-29) установлено на основании спектральных методов, а для (1,4) - сравнением с литературными данными [1, 4, 5, 9]. Спектральные характеристики (ЯМР 13C) 5-алкоксипентанонов-2 приведены в таблице 4. Спектры ЯМР 13C зарегистрированы на спектрометре "JEOL FX-900" (22,5 МГц).
Формула изобретения

РИСУНКИ
Рисунок 1, Рисунок 2, Рисунок 3