Кремнийорганические полимеры, содержащие металлические кластеры, и способ их получения
Керамикообразующие кремнийорганические полимеры, содержащие металлические кластеры, общей формулы [-(R1)Si(R2)-E-)nEKл-]m (1), где Е = Si(R3R4), NR3, В-, (-B-NR5), (-B-C-N), (Al-C-N), цикло-(SiR3R4NR5)x, (CB10H10C-O-SiR3R4), p-C6H4, (CH2)y; n = 5; m = 0,001-1; x = 3, 4, 5; у = 2-4; R1-R5 = H, СН3, С2Н5, Ph, СН= СН2, СН2СН=СН2; Кл - кластеры переходных металлов III-VIII групп и побочной подгруппы I группы - новый тип керамикообразующих кремнийорганических монофазных полимеров, содержащих металлы, равномерно распределенных в структуре полимера без участия кислорода, которые проявляют ярко выраженную способность к волокно- и пленкообразованию из растворов или расплавов, отверждаются при термохимической обработке, при пиролизе дают высокий выход керамического остатка (до 78 мас.%). 2 с. и 1 з. п. ф-лы, 1 табл.
Изобретение относится к области получения кремнийорганических полимеров, конкретно к области получения керамикообразующих кремнийорганических полимеров (ККП). Последние находят применение главным образом в качестве сырья для получения высокопрочной жаростойкой неоксидной (SiC, Si3N4, Si-B-C, Si-B-N-C, Si-Al-N-C) композиционной керамики.
До настоящего времени были известны полисиланы [J. Am. Chem. Soc., 71, 963 (1949); Philos. Trans. R. Soc. London. A294:419 (1980)], полиборсиланы [J. App; . Polym. Sci. , 42 851 (1991); Патент США 5 130 278, МКИ5 C 08 B 35/56 (1992); Патент США 5 223 461, МКИ5 C 08 B 35/52 (1993)] и поликарбосиланы [Патент США 4 414 403, МКИ3 C 07 F 7/05 (1983)], которые получены дехлорированием смеси хлорсиланов (и хлоридов бора при получении полиборсиланов) под действием щелочных металлов по реакции Вюрца, карборансилоксаны [Termally Stable Polymers, Ch. 10. New York: Marcel Dekker. Papetti, S., Schaeffer, B. B. , Grany, A.P., Heying, T.L. (1966); J. Polum. Sci A-1 (4): 1623], полученные по реакции конденсации, а также полисилазаны [Патент США 3 853 567, НКИ 106-44 (1974); Патент США 3 892 583, НКИ 106-55 (1975); J. Am. Ceram Soc. 67, 132, (1984)] , полиборсилазаны [J. Am. Ceram. Soc. 73, 7, 2131-2133, (1990); "Key Engineering Materials", v. 89-91, pp. 75-80 (1994); Mat. Res. Soc. Symp. Proc., v. 271, pp. 821-826 (1992)] и полиалюмосилазаны ["Mat. Res. Soc. Symp. Proc., 121, p. 461 (1988)], синтезированные аммонолизом хлорсиланов и хлорзамещенных борсилазанов или алюмосилазанов с использованием аммиака или метиламинов. Нестабилизированные ККП приведенных выше типов используют обычно для изготовления тонкостенных керамических изделий и деталей сложной формы, работающих в условиях высоких температур. Однако при повышении температуры до 1200oC и более керамика рекристаллизуется, что приводит к потере ее прочности. Между тем современная техника требует длительной работы при температурах 1600oC и выше. Известно, что присутствие в керамической матрице равномерно распределенных гетероэлементов, например, тугоплавких металлов, бора, азота, кислорода приводит к стабилизации мелкокристаллической структуры керамики до высоких температур. В то же время, если введение металлов приводит к упрочнению керамической массы и повышению жаростойкости, то наличие кислорода и азота при температурах выше 1200oC вызывает увеличение пористости керамики, связанное с образованием газообразных оксидов. Одна из попыток сохранения плотности керамики при повышенных температурах заключается в механическом смешении жидких или твердых предкерамических полимеров (главным образом полисилоксанов) с активными мелкодисперсными наполнителями (Ti, Cr, V, Mo, Si, B, CrSi2, MoSi2). В процессе дальнейшей термической декомпозиции полимерной матрицы происходит взаимодействие наполнителей с углеродом полимера или азотом атмосферы и образование единой нанокристаллической керамической матрицы Si-O-C(N) [J. Am. Ceram. Soc., 78 [4] 835-48 (1995)]. Однако этот метод не позволяет достигать необходимой степени однородности распределения гетерочастиц в полимере и пригоден главным образом для создания объемной керамики. В последние годы быстрое развитие получило химическое направление по синтезу привитых полисилазанов содержащих атомы бора, титана, циркония, алюминия по реакции гидроборирования и переаминирования [Mater. Res. Soc. Symp. Proc., 346, 605 (1994)]. Полученные полимеры имеют разветвленную структуру с равномерным распределением гетероэлементов, однако это направление разработано только для полимеров одного класса, процесс их получения отличается многостадийностью и связан с использованием дорогостоящего и токсичного сырья (H3B





p

m = 0,001 - 1;
x = 3, 4, 5;
y = 2-4;
R1, R2, R3, R4, R5 = H, CH3, C2H5, C6H5, CH=CH2, CH2CH=CH2,
или их смеси, подвергают взаимодействию с одним или несколькими металлосодержащими соединениями, при этом исходную смесь кремнийорганических продуктов предварительно нагревают в инертной атмосфере до температуры 50oC и более, но не превышающей 450oC. Металлосоедержащие комплексы вводят предпочтительно в количестве 0,1-10% от веса исходной смеси. При добавлении комплексов в количествах менее 0,1% масс. эффект от введения металла незначителен, при добавлении 10% масс. в процессе синтеза происходит образование нерастворимых побочных продуктов. В некоторых случаях для достижения необходимой степени поликоденсации КлККП реакционная масса дополнительно прогревается при температуре 100-450oC в течение 0,5 - 5 часов. При прогревании при температуре ниже 100oC или менее получаса реакция не идет, при температуре выше 450oC или с увеличением времени прогрева более 5 часов образуются коксообразные нерастворимые продукты. Для решения поставленной задачи были использованы металлсодержащие комплексы переходных металлов III-VIII групп, таких как Ti, Zr, Hf, V, Fe, Ni, Co, Cr, W, Mo, Mn, Re, Pt, Pd, Rh, B, комплексы металлов побочной подгруппы I группы (Ag, Cu) с органическими, карбонильными, карболлильными, диалкил(арил)-амидными, триалки-(арил)-силильными, бис[гексаалкил(арил)дисилил] амидными и др. лигандами, а также смешанные, би- и многоядерные комплексы и любые координационные соединения металлов, кроме тех, в которых присутствуют прямые связи металл-кислород. Примерами используемых металлсодержащих соединений могут быть: [C5(CH3)5] 2TiCl2, (C5H5)ZrCl2, (CH3C5H4)2HfBr2, Fe(CO)5, Fe3(CO)12, Fe(CO)9,


C5H5(CO)2, Co(CO)8, Ni(CO)4, [C5H5Ni(CO)]2, (C3H5)2Ni, (C5H5)2Ni, (CH3C6H4)2Cr, CH3C5H4Cr(CO)3, Cr(CO)6, W(CO)6, (CH3C6H4)2W,
C3H5MoC5H5(CO)2, C3H5Mn(CO)4, (C3H5)2Pd, C3H5PdC5H5, C3H5PhC5H5, C5H5Ph(CO)2, (CH3)4Pt, C3H5PtC5H5, Ti(CH2C6H5)4, Zr(CH3)4,
Ti[N(CH3)2]4, Zn{N[Si(CH3)]2}2 и др. Введение комплексов в реакционную массу, состоящую из олигомерных или полимерных кремнийорганических продуктов формулы 2 или их смесей, позволило во всех случаях получить положительные результаты, что подтверждает обоснованность объема притязаний. По данным ИК - спектроскопии основной скелет КлККП состоит из

звеньев, боковыми заместителями при атомах кремния и азота являются гидридные







Формула изобретения

где

n

m = 0,001 - 1;
x = 3, 4, 5;
y = 2 - 4;
R1, R2, R3, R4, R5 = Н, СН3, С2Н5, С6Н5, СН = СН2, СН2СН=СН2;
Кл - кластеры переходных металлов III - VIII групп и побочной подгруппы I группы. 2. Способ получения кремнийорганических полимеров формулы I, характеризующийся тем, что предварительно нагретые в инертной атмосфере исходные соединения общей формулы II

где

р

m = 0,001 - 1;
x = 3, 4, 5;
y = 2 - 4;
R1, R2, R3, R4, R5 = Н, СН3, С2Н5, С6Н5, СН = СН2, СН2СН=СН2;
или их смеси подвергают взаимодействию с металлосодержащими комплексами или их смесями при 50 - 450oC. 3. Способ по п.2, характеризующийся тем, что исходную массу после добавления металлосодержащих комплексов выдерживают при 100 - 450oC в течение 0,5 - 5 ч.
РИСУНКИ
Рисунок 1, Рисунок 2