Подводное ледокольное судно
Изобретение относится к судостроению, в частности к судам, плавающим во льдах и разрушающим ледяной покров резонансным методом. Подводное ледокольное судно содержит корпус с носовым обтекателем, установленным с возможностью выдвижения, а корпус судна снабжен датчиком гидростатического давления, размещенным в кормовой оконечности судна. Поддержание резонансной скорости и обеспечение желаемой интерференции волн осуществляется выдвигом обтекателя и контролируется датчиком давления. Достигается повышение эффективности процесса ледоразрушения благодаря возможности управления интерференцией волн. 4 ил.
Изобретение относится к области судостроения, в частности к судам, плавающим во льдах и разрушающим ледяной покров резонансным методом.
Известно устройство судна, содержащего корпус с носовым обтекателем (патент Великобритании N 2212452, кл. B 63 B 35/08, 1989). Недостаток известного устройства состоит в том, что при реализации резонансного метода разрушения ледяного покрова судном может быть разрушен ледяной покров толщиной, не превышающей некоторого предельного значения, поскольку предельная толщина разрушаемого льда будет определяться геометрическими характеристиками корпуса и для каждого судна будет величиной конечной. Технический результат, достигаемый заявляемым изобретением, заключается в повышении эффективности разрушения ледяного покрова. Требуемый результат достигается путем установки в носовой оконечности подводного судна выдвижного обтекателя и датчика давления, необходимого для определения максимума амплитуды изгибно-гравитационных волн (фиг. 1). Работа датчика давления основана на использовании особенности процесса волнообразования при движении подводного судна вблизи поверхности жидкости. При этом в носовой части происходит увеличение давления и понижение в кормовой (фиг. 2). Эти области давления являются причиной волнообразования. Таким образом, по величине гидростатического давления на поверхности судна можно судить об амплитуде возбуждаемых волн. Если датчик давления расположен в носовой оконечности, то с его помощью можно определить лишь максимум амплитуд носовых волн. Однако с его помощью в этом случае не удастся уловить момент, соответствующий максимальному волновому сопротивлению судна. Резкое увеличение волновой составляющей сопротивления происходит при совпадении фаз носовой и кормовой системы волн. Так как взаимодействие волновых систем происходит в кормовой оконечности, то располагая датчик в корме судна, можно контролировать не только рост амплитуды волн кормовой системы, но и процесс интерференции картины волнообразования. Для управления интерференцией волн судно снабжено выдвижным обтекателем. Выдвиг обтекателя изменяет коэффициент продольной полноты






на фиг. 4 - подводное ледокольное судно в режиме ледоразрушения (амплитуда волн максимальна). В носовой оконечности корпуса 1 подводного ледокольного судна установлен обтекатель 2, выдвигом которого регулируется процесс волнообразования в ледяном покрове. В кормовой оконечности установлен датчик давления 3, по показаниям которого можно судить о величине давления в кормовой части, т.к. минимальные значения давления соответствуют резонансной скорости ледоразрушения. Поддержание резонансной скорости и обеспечение желаемой интерференции волн осуществляется выдвигом обтекателя 2 контролируется датчиком давления 3, что обеспечивает непрерывность процесса ледоразрушения.
Формула изобретения
РИСУНКИ
Рисунок 1, Рисунок 2, Рисунок 3, Рисунок 4