Способ определения предела контактной выносливости материала
Используется при испытании материалов при экспрессном определении предела контактной выносливости. Способ заключается в том, что испытуемый материал нагружают посредством сферического индентора радиусом R, после снятия нагрузки Р измеряют параметры отпечатка, при этом предварительно измеряют радиусы кривизны испытуемой поверхности в сечениях двумя главными плоскостями кривизны и радиус кривизны сферического индентора, по которым определяют приведенный радиус кривизны Rпр., используя две различные нагрузки в диапазоне, соответствующем измерению твердости, внедряют сферический индентор в испытуемый материал и измеряют глубины двух полученных остаточных отпечатков, определяют коэффициент пластической нормальной контактной податливости. Технический результат - возможность оперативного определения предела контактной выносливости с использованием оборудования для контроля твердости, повышение точности определения. 1 табл.
Изобретение относится к методам испытания материалов на усталостную прочность, в частности к способам определения предела контактной выносливости материала.
Известен способ оценки усталостной прочности материала (а.с. 1037126, М. Кл. 4 G 01 N 3/32, заявл. 14.05.82, опубл. 23.08.83, Б.И. N 31), основанный на измерении твердости материала образца, отличающийся тем, что, с целью расширения функциональных возможностей способа путем обеспечения оценки усталостной прочности алюминиевых сплавов с нестабильной структурой, после измерения твердости материала образца в исходном состоянии образец подвергают термической обработке на возврат при 250-270oC в течении 45 - 80 с, затем вторично измеряют твердость, определяют относительное ее изменение при возврате, и по нему судят об усталостной прочности материала. Недостатком данного способа является то, что он пригоден только для одного вида материала - алюминиевых сплавов. Недостатком способа является то, что при оценке усталостной прочности он не учитывает форму испытуемой поверхности материала, что значительно снижает точность способа и его практическую применимость. Наиболее близким по технической сущности является способ определения контактной выносливости материала (Трубин Г.К. Контактная усталость материалов для зубчатых колес. -М.:Машгиз, 1962. - 404 с., на с.280), предусматривающий измерение твердости материала образцов, при этом одну часть образцов испытывают на твердость, а затем при циклическом контактном взаимодействии определяют их предел контактной выносливости, другую часть образцов испытывают на твердость и об их контактной выносливости судят по зависимости предела контактной выносливости от твердости материала, полученной на первой группе образцов. С помощью этого способа установлены эмпирические зависимости между пределом контактной выносливости





i - коэффициент пластической нормальной контактной податливости испытуемого материала;
Rпр - приведенный радиус кривизны в контакте индентора с поверхностью испытуемого материала;
P1, P2 - нагрузки на индентор;
h1, h2 - глубины остаточных отпечатков, отвечающие нагрузкам P1 и P2;
a, b - коэффициенты контактной прочности, зависящие от химического состава испытуемого материала и схемы нагружения его поверхности при эксплуатации. Существенным отличием предлагаемого способа является предложение автора предварительно измерять радиусы кривизны поверхности испытуемого материала в сечениях двумя плоскостями главных кривизн и радиус кривизны сферического индентора, по которым определяют приведенный радиус кривизны Rпр, что позволяет учитывать влияние кривизны испытуемой поверхности на предел контактной выносливости. Существенным отличием является то, что используя две различные нагрузки в диапазоне, соответствующем измерению твердости, внедряют сферический индентор в испытуемый материал, измеряют глубины двух полученных остаточных отпечатков, по которым определяют коэффициент пластической нормальной контактной податливости, что позволяет существенно повысить точность определения контактной выносливости. Это связано с тем, что появлению микротрещин, приводящих к усталостному контактному разрушению, предшествуют локальные пластические деформации; коэффициент i нормальной контактной податливости характеризует сопротивление материала возникновению и развитию пластической деформации и, таким образом, чем выше для данного материала коэффициент i нормальной контактной податливости, тем необходимо и большее контактное напряжение для возникновения локальных пластических деформаций, а следовательно, такой материал имеет и более высокий предел контактной выносливости. Выбор нагрузок на идентор в диапазоне, соответствующем измерению твердости, существенно упрощает определение величины коэффициента i пластической нормальной контактной податливости, поскольку при этом существует линейная связь между нагрузкой и глубиной остаточного отпечатка и коэффициент может быть найден по конечным значениям самих нагрузок и глубин остаточных отпечатков, поэтому коэффициент i остается неизмененным во всем диапазоне используемых нагрузок. Существенным отличием способа является предложение при определении предела контактной выносливости учитывать коэффициенты a и b контактной прочности, что позволяет повысить точность определения предела контактной выносливости, поскольку его значение зависит от схемы нагружения испытуемой поверхности при эксплуатации. Существенно отличается от известных и предложенная зависимость для определения предела контактной выносливости. Эта зависимость в новой форме устанавливает взаимосвязи между всеми существенными параметрами, определяющими величину предела контактной выносливости: коэффициент i пластической нормальной контактной податливости, кривизна испытуемой поверхности (она входит вместе с радиусом сферического индентора в приведенный радиус кривизны Rпр), коэффициента a и b контактной прочности, зависящие от химического состава испытуемого материала и схемы нагружения его поверхности при эксплуатации. Проведенный заявителем анализ техники, включающий поиск по патентным и научно-техническим источникам информации и выявление источников, содержащих сведения об аналогах заявленного изобретения, позволил установить, что заявителем не обнаружен аналог, характеризующийся признаками, идентичными всем существенным признакам заявленного изобретения, а определение из перечня выявленных аналогов прототипа, как наиболее близкого по совокупности признаков аналога, позволил выявить совокупность существенных (по отношению к усматриваемому заявителем техническому результату) отличительных признаков в заявленном объекте, изложенных в формуле изобретения. Следовательно, заявленное изобретение соответствует требованию "новизна" по действующему законодательству. Для проверки соответствия заявляемого изобретения требованию изобретательского уровня, заявитель провел дополнительный поиск известных решений, с целью выявления признаков, совпадающих с отличительными от прототипа признаками заявленного изобретения, результаты которого показывают, что заявленное изобретение не следует для специалиста явным образом из известного уровня техники, поскольку из уровня техники, определенного заявителем, не выявлено влияние предусматриваемых существенными признаками заявленного изобретения действий на достижение технического результата. Следовательно, заявленное изобретение соответствует требованию "изобретательский уровень" по действующему законодательству. Способ определения предела контактной выносливости материала реализуется следующим образом. Предварительно измеряют радиусы R12 и R22 кривизны поверхности испытуемого материала в сечениях двумя плоскостями главных кривизн и радиус R сферического индентора, по которым определяют приведенный радиус кривизны Rпр по формуле

где
A и B соответственно меньшая и большая из следующих двух сумм


где
R - радиус сферического индентора; R12 и R22 - радиусы кривизны поверхности образца в сечениях первой и второй плоскостями главных кривизн; знаки "плюс" и "минус" относятся соответственно к случаям контакта индентора с испытуемой поверхностью, сечение которой в данной плоскости главной кривизны (первые индексы в обозначении R12 и R22) ограничено выпуклым или вогнутым контурами; nр, h

i = (h1-h2)/(P1-P2),
по которому с учетом приведенного радиуса Rпр и коэффициентов "a" и "b" контактной прочности определяют предел контактной выносливости по формуле (4)


При этом для определения численных значений коэффициентов "a" и "b" контактной прочности используют два вспомогательных образца с известными величинами пределов контактной выносливости (изготовленные из черных или цветных металлов, в зависимости от того предел контактной выносливости какого материала предполагается определять), диапазон пределов контактной выносливости которых включает значения пределов контактной выносливости испытуемых деталей, а схема нагружения вспомогательных образцов, при которой определяют их предел контактной выносливости прямыми испытаниями по ГОСТ 25.501-78 "Расчеты и испытания на прочность в машиностроении. Методы испытания на контактную усталость" такая же, как и у испытуемых деталей в процессе эксплуатации (качение без проскальзывания, качение с проскальзыванием, качение с внешней касательной нагрузкой, пульсирующий контакт). Для каждого из двух вспомогательных образцов также измеряют радиусы кривизны поверхности в сечениях двумя плоскостями главных кривизн и радиус R кривизны сферического индентора, по которым по формуле (5) вычисляют приведенные радиусы кривизны, соответственно Rпр1 и Rпр2. Затем, используя две различные нагрузки в диапазоне, соответствующем измерению твердости, внедряют сферический индентор в каждый из двух вспомогательных образцов, измеряют на каждом из вспомогательных образцов глубины двух полученных остаточных отпечатков (на первом



где




где






Для отношения A/B = 0,8 нашли nр=0,997, n

при этом

Для определения коэффициентов a и b контактной прочности использовали вспомогательные образцы с плоской поверхностью, изготовленные из стали 45 с известными значениями предела контактной выносливости: первый образец -


для первого образца


для второго образца


для первого вспомогательного образца i1, а также второго i2


По формулам (9) и (10) определили коэффициенты контактной прочности


Таким образом, полученные значения коэффициентов a и b контактной прочности позволяют определять предел контактной выносливости испытуемых материалов из сталей, схема нагружения которых при эксплуатации соответствует принятой выше схеме "качение с проскальзыванием". При этом формула (4) с учетом найденных значений коэффициентов a и b примет вид


Результаты определения предела контактной выносливости


N 1, 2, 3 - нормализация, улучшение (НВ 2200...3500 МПа),
N 4, 5 - объемная закалка (HRCэ 45...55),
N 6, 7 - закалка ТВЧ (HRCэ 45...50),
N 8, 9 - цементация и закалка (HRCэ 56...60),
N 10 - нитроцементация и закалка (HRCэ 58). Материалы N 1...3 испытаны стальным закаленным шариком, а N 4...10 твердосплавным шариком 5 мм (R = 2,5 мм). Как видно из таблицы, в подавляющем большинстве испытаний погрешность определения предела контактной выносливости предлагаемым способом не превышает


- способ, воплощающий заявленное изобретение при его осуществлении, предназначен для использования в промышленности для оперативного контроля одной из важнейших механических характеристик материала - предела контактной выносливости, который используется при расчете зубчатых и фрикционных передач, подшипников качения и т.п.;
- для заявленного изобретения в том виде, как оно охарактеризовано в независимом пункте ниже изложенной формулы изобретения, подтверждена возможность его осуществления с помощью вышеописанных в заявке или известных до даты приоритета средств и методов;
- способ, воплощающий заявленное изобретение при его осуществлении, способен обеспечить достижение усматриваемого заявителем технического результата. Следовательно, заявленное изобретение соответствует требованию "промышленная применимость" по действующему законодательству.
Формула изобретения
i = (h1 - h2) / (P1 - P2),
по которому определяют предел контактной выносливости испытуемого материала по следующей зависимости:


где

i - коэффициент пластической нормальной контактной податливости испытуемого материала;
Rпр. - приведенный радиус кривизны в контакте индентора с поверхностью испытуемого материала;
P1, P2 - нагрузки на индентор;
h1, h2 - глубины остаточных отпечатков, отвечающие нагрузкам P1 и P2;
a, b - коэффициенты контактной прочности, зависящие от химического состава испытуемого материала и схемы нагружения его поверхности при эксплуатации.
РИСУНКИ
Рисунок 1