Способ химического разделения изотопов урана
Изобретение относится к ядерной энергетике и может быть использовано при корректировке изотопного состава ядерного топлива. В хроматографическую колонну с тефлоновым порошком, на поверхность которого нанесен экстрагент, заливают раствор, содержащий: [U(VI)]-115,5 г/л, [HNO3]-2,0 моль/л, [N2H4] -0,5 г/л. Сформировывают полосу урана (IV). Процесс противоточной экстракции обеспечивает коэффициент разделения, не равный 1. Рефлакс урана осуществляют без изменения валентного состояния методом исчерпывающей экстракции и реэкстракции по концам полосы. Увеличивается степень разделения изотопов U238 и U232, уменьшается число реагентов. Обменная система химически устойчива. 4 табл., 2 ил.
Изобретение относится к процессам разделения изотопов урана химическими методами и может быть использовано в радиохимическом производстве для корректировки изотопного состава ядерного топлива.
Известны различные способы разделения изотопов урана химическими методами. Из них наиболее эффективными являются методы, основанные на реакции изотопного обмена между двумя валентными формами урана, находящимися в разных фазах - водной и органической. Так, например, известен способ разделения изотопов урана японской фирмы "Асахи Кемикл индастри" (Пат. США N 4118457, кл. B 01 D 59/30, 03.10.78), в основу которого положена реакция изотопного обмена между четырех- и шестивалентным ураном, находящимся соответственно в фазе раствора и анионообменной смолы. Через анионообменную смолу в форме металла-окислителя, например, железа (III), проводят полосу урана (IV), элюируя его солянокислым раствором металла-восстановителя, например, титана (III). Схема ионообменного редокс-хроматографического процесса разделения изотопов урана фирмы "Асахи Кемикл индастри" ("Асахи-процесс) представлена на фиг. 1. Взаимодействуя с восстановителем, шестивалентный уран восстанавливается до четырехвалентного состояния, десорбируется с анионообменной смолы и с элюатом переносится к зоне окисляющего агента, где окисляется и сорбируется на смоле. Таким образом, происходит движение адсорбционной полосы урана, в ходе которого изотопом уран-238 обогащается уран (IV) по реакции изотопного обмена (р.и.о.) (1):


крайне низкая химическая устойчивость растворов трехвалентного урана и, как следствие, необходимость использования солянокислой среды с минимальным содержанием примесей металлов III-IV группы. При этом однократный коэффициент разделения изотопов урана не превышает величины 1,0030. Задача изобретения - увеличение степени разделения изотопов, уменьшение числа используемых реагентов, увеличение химической устойчивости обменной системы. Поставленная задача решается тем, что в способе разделения изотопов урана, включающем изотопный обмен между двумя его валентными формами, одной из которых является четырехвалентный уран, движущимися в полосе, сформированной в процессе противоточной экстракции, обеспечивающей коэффициент разделения валентных форм урана, не равный единице, с рефлаксом валентных форм урана методами исчерпывающей экстракции и реэкстракции по концам его полосы, в качестве второй валентной формы используют шестивалентный уран, изотопный обмен проводят в растворах азотной кислоты, а рефлакс урана осуществляют без изменения его валентного состояния. Благодаря тому, что коэффициент разделения валентных форм не равен единице, создается полоса урана с разнесенными по ее концам зонами двух противопоставляемых валентных форм урана: четырех- и шестивалентного урана, и реакция изотопного обмена проходит в месте перекрытия разнесенных зон валентных форм урана, где направление межфазного переноса валентных форм противоположно. В соответствии с традиционными представлениями в такой системе максимальная степень разделения изотопов не может превысить значения, равного величине однократного коэффициента разделения изотопов, например для пары уран (VI)/уран (IV)

В трех примерах реализации способа приведены данные по разделению смеси изотопов урана-232 и урана-238, присутствующих в высокофоновом уране. Содержание урана-232 определяли по ОСТ 95.999-92, включающем химическое выделение урана и последующее альфа-спектрометрическое определение содержания урана-232 в % к урану-238. Опыты, в которых было организовано движение полосы из шестивалентной и четырехвалентной форм урана, были поставлены в двух вариантах: хроматографическом и в варианте противоточной экстракции. Пример 1. В эксперименте использовалась хроматографическая колонка, снаряженная тефлоновым порошком с фракцией 0,25 - 0,5 мм, на поверхность которого предварительно нанесен экстрагент 65%-ный ТБФ в РЭД-2 в количестве 5% от веса порошка. Характеристики колонки:
Высота - 1м;
Диаметр - 0,1 м;
Вес тефлонового порошка (0,25 - 0,5 мм) - 72,14 г;
Вес экстрагента - 3,607 г;
Объем межзернового пространства - 35 см3. Колонка предварительно была приведена в равновесие с раствором, содержащим азотной кислоты 2 моль/л и гидразина 0,5 г/л. Чтобы сформировать в колонке полосу урана (IV), в нее вводили 2 мл раствора следующего состава:
[U(IV)] = 115,5 г/л;
[HNO3] = 2,0 моль/л;
[N2H4] = 0,5 г/л. Затем промывали колонку 60 мл раствора U(VI) состава:
[U(VI)] = 31,0 г/л;
[HNO3] = 2,0 моль/л;
[N2H4] = 0,5 г/л. В конце эксперимента колонка промывалась раствором, содержащим азотную кислоту с концентрацией 0,3 моль/л для реэкстракции урана (VI). Таким образом в эксперименте было реализовано противоточное движение водной и органической фаз с образованием полосы двух валентных форм урана и с исчерпывающей экстракцией и реэкстракцией по концам полосы урана. Поступающий в колонку шестивалентный уран вытеснял четырехвалентный уран. Движение по колонке полосы четырехвалентного урана, ее передний и задний фронт можно было наблюдать визуально. Продолжительность эксперимента 4 часа. При выходе из колонки заднего фронта четырехвалентного урана (переднего фронта шестивалентного урана) отбирали пробы для анализа на содержание урана четырехвалентного, шестивалентного и изотопного состава. Изотопный состав исходного урана и результаты эксперимента приведены соответственно в табл. 1 и 2. Из данных табл. 2 следует, что легкими изотопами обогащается уран со стороны заднего фронта полосы четырехвалентного урана в месте ее перекрытия с фронтом шестивалентного урана. Пример N 2. В эксперименте использовалась та же хроматографическая колонка, что и в первом опыте. Колонка предварительно была приведена в равновесие с раствором, содержащим азотной кислоты 2 моль/л и гидразина 0,5 г/л. Чтобы сформировать в колонке полосу урана (IV), в нее ввели 1 мл раствора следующего состава:
[U(IV)] = 163,3 г/л;
[U(VI)] = 29,7 г/л;
[HNO3] = 2,13 моль/д;
[N2H4] = 26 г/л,
и затем элюировали четырехвалентный уран раствором шестивалентного урана состава:
[U(VI)] = 100,0 г/л;
[NHO3] = 2,0 моль/л;
[N2H4] = 0,5 г/л. В процессе элюирования четырехвалентный уран вытеснялся на передний фронт полосы урана. Поступающий в колонку шестивалентный уран вытеснял четырехвалентный уран на передний фронт. Движение по колонке полосы четырехвалентного урана можно было наблюдать визуально. Продолжительность эксперимента 4 часа. При выходе из колонки заднего фронта четырехвалентного урана (переднего фронта шестивалентного урана) отбирали пробы для анализа на содержание урана четырехвалентного, шестивалентного и изотопного состава. Результаты приведены в табл. 3. Из данных табл. 3 следует, что легкими изотопами обогащается уран, начиная со стороны заднего фронта полосы четырехвалентного урана в месте ее перекрытия с фронтом шестивалентного урана и кончая передним фронтом полосы четырехвалентного урана. Пример N 3. В этом примере описан изотопный эффект, который был зафиксирован при экстракционной переработке растворов высокофонового урана, находящегося в шестивалентном состоянии. Технологией переработки высокофонового урана предусмотрено введение в исходный и промывной растворы четырехвалентного урана, применяемого для восстановления плутония до трехвалентного состояния. В экстракционной колонне в процессе переработки исходного раствора высокофонового урана, содержащего азотной кислоты 30 - 60 г/л, при соотношении фаз O:B = 2,5:1 и насыщении экстрагента шестивалентным ураном 100 - 105 г/л четырехвалентный уран образует концентрационный пик на фронте шестивалентного урана. В зоне перекрытия фронтов четырехвалентного и шестивалентного урана воспроизводится ситуация с противоточным движением валентных форм урана через границу раздела фаз, когда четырехвалентный уран вытесняется из органической фазы шестивалентным ураном и реэкстрагируется в водную фазу, обогащаясь легкими изотопами, а шестивалентный наоборот - экстрагируется в органическую фазу, обогащаясь тяжелыми изотопами. Частично, в небольших количествах (< 1 г/л), уран уходил с рафинатом. Так как пик четырехвалентного урана находился ближе к выходу рафината из колонны, чем фронт шестивалентного урана, то в рафинате относительное содержание в уране его четырехвалентной формы оказывалось значительно выше, чем в реэкстракте урана, что повлекло изменение изотопного состава урана в рафинате и в реэкстракте. Результаты анализа исходного урана, урана, ушедшего с рафинатом, и урана в упаренном реэкстракте показали (см. табл. 4), что наблюдается концентрирование урана-232 в уране, теряемом с рафинатом, и обеднение по этому изотопу урана реэкстракта.
Формула изобретения
РИСУНКИ
Рисунок 1, Рисунок 2, Рисунок 3, Рисунок 4