Дициклогексиламиды n-замещенных -аминокарбоновых кислот, обладающие антиаритмической и антифибрилляторной активностью
Изобретение относится к области химии биологически активных веществ, которые могут иметь применение в медицине. Предлагаемые биологически активные соединения относятся к новой группе биологических соединений, а именно к дициклогексиламидам N-замещенных -аминокарбоновых кислот общей формулы, приведенной в описании. Заявляемые соединения обладают выраженной антиаритмической и антифибрилляторной активностью и отличаются от известных антиаритмических препаратов тем, что сочетают в себе свойства антиаритмиков класса I и класса III. 3 табл., 2 ил.
Изобретение относится к новой группе биологически активных химических соединений, а именно к дициклогексиламидам N-замещенных -аминокарбоновых кислот общей формулы I
где R1 водород или низший алкил, R2 и R3 - одинаковые или различные, водород, низший алкил, оксиалкил, аминоэтил, циклогексил, либо R2 и R3 вместе с несущим их атомом азота составляют насыщенный гетероцикл, имеющий один или два гетероатома и их фармацевтически приемлемые соли кислотного присоединения, а также четвертичные соли.




8 - дициклогексиламид морфолиноуксусной кислоты;
9 - дициклогексиламид морфолиноуксусной кислоты гидрохлорид;
10 - дициклогексиламид гексаметилениминоуксусной кислоты гидрохлорид;
11 - дициклогексиламид октагидропирроло(1,2-а)- пиразиноуксусной кислоты дигидрохлорид;
12 - дициклогексиламид бутиламиноуксусной кислоты гидрохлорид;
13 - дициклогексиламид изо-бутиламиноуксусной кислоты гидрохлорид;
14 - дициклогексиламид

15 - дициклогексиламид циклогексиламиноуксусной кислоты гидрохлорид;
16 - дициклогексиламид аминоуксусной кислоты гидрохлорид гидрат;
17 - дициклогексиламид (2-аминоэтил) аминоуксусной кислоты дигидрохлорид. Таким образом, у заявляемой группы веществ общей формулы I прототипов по химическому строению не описано. В качестве препаратов сравнения по антиаритмической активности выбран препарат лидокаин, который относится к антиаритмикам I класса и препарат сематилид, который относится к антиаритмикам класса III. Выбор этих препаратов связан с тем, что соединения заявляемой группы сочетают в себе свойства антиаритмиков класса I и III. Синтез заявляемых соединений I и IV осуществляется взаимодействием дициклогексиламида


где
Hal = Cl или Br
IV.1 R1=H, R2=R3=C2H5, R4=H, x = Cl
IV.2 R1=H, R2=R3=C2H5, R4=CH3, x = J
IV.3 R1=H, R2=R3=C2H5, R4=CH2CH=CH2, x = Br
IV.4 R1=CH3, R2=R3=C2H5, R4=H, x = Cl
IV.5 R1=H, R2=R3=CH2CH2OH, R4=H, x = Cl
IV.6 R1=CH3, R2=R3=CH2CH2OH, R4=H, x = Cl
IV.7 R1=H,

IV.8 R1=H,

IV.9 R1=H,

IV.10 R1=R2=H, R3=H-C4H9, R4=H, x = Cl
IV.11 R1=R2=H, R3=CH2CH(CH3)2, R4=H, x = Cl
IV.12 R1=CH3, R2=H, R3=H-C4H9, R4=H, x = Cl
IV.13 R1=R2=H, R3=C6H11, R4=H, x = Cl
IV.14 R1=R2=H, R3=CH2CH2NH2, R4=H, x = Cl
IV.15 R1=R2=R3=R4=H, x = Cl
Дициклогексиламиды N-замещенных


Вычислено, %: C 66,22; H 10,5; N 8,58. 3 г основания растворяют в 30 мл ацетона, прибавляют концентрированную соляную кислоту до pH 1, оставляют стоять на ночь. Осадок отфильтровывают, промывают ацетоном, сушат на воздухе. Выход гидрохлорида IV.5 2,6 г (77,8%). Т. пл. 219-220oC (разл.) (из изопропилового спирта). Найдено,%: C 59,46; H 9,68; N 7,74; Cl 9,86. C18H35ClN2O3. Вычислено,%: C 59,57; H 9,72, N 7,72; Cl 9,77. Пример 6. Гидрохлорид дициклогексиламида бис-(2-гидроксиэтил)-


Найдено,%: C 70,4; 10,48; N 9,11. C18H32N2O2. Вычислено,%: C 70,09; H 10,46; N 9,08. К раствору 1,5 г основания в эфире прибавляют эфир, насыщенный хлористым водородом. Осадок отфильтровывают. Выход гидрохлорида IV.7 1,3 г (71,4%). Т. пл. 260-261oC (разл.) (из смеси ацетона с абсолютным спиртом) (3:1). Найдено,%: Cl 10,30, C18H32ClN2O2. Вычислено: Cl 10,28. Пример 8. Гидрохлорид дициклогексиламида гексаметилениминоуксусной кислоты (IV.8). Смесь 2,6 г (0,01 моль) дициклогексиламида хлоруксусной кислоты и 4 г (0,04 моль) гексаметиленимина в 25 мл толуола кипятят 3,5 ч. Реакционную массу охлаждают, промывают водой и упаривают досуха. В остатке - масло (3,2 г) растворяют в 32 мл ацетона и прибавляют эфир, насыщенный хлористым водородом до pH 1. Осадок отфильтровывают, промывают ацетоном. Выход 2 г (55,8%). Т. пл. 246-247oC (разл.) (из изопропилового спирта). Найдено,%: C 67,33, H 10,44; N 7,83; Cl 9,84. C20H37ClN2O
Вычислено,%: C 67,30; H 10,45; N 7,85; Cl 9,93. Пример 9. Дигидрохлорид дициклогексиламида октагидропирроло(1,2-а) пиразиноуксусной кислоты (IV.9). Смесь 2,6 г (0,01 моль) дициклогексиламида хлоруксусной кислоты и 2,52 г (0,02 моль) октагидропирроло(1,2-а)пиразина в 25 мл толуола кипятят 3 ч. Реакционную массу охлаждают, промывают водой и упаривают досуха. В остатке - масло (2,8 г) растворяют в 20 г ацетона и прибавляют эфир, насыщенный хлористым водородом до pH 1. Осадок отфильтровывают, выход 2,3 г (54,7%). Т. пл. 239-240oC (разл.) (из изопропилового спирта). Найдено,%: C 59,91; H 9,45; N 10,11; Cl 16,80. C21H39Cl2N3O. Вычислено,%: C 59,99; H 9,35; N 9,99; Cl 16,86. Пример 10. Гидрохлорид дициклогексиламида н-бутиламиноуксусной кислоты (IV.10). Смесь 5,16 (0,02 моль) дициклогексиламида хлоруксусной кислоты и 14,6 г (0,2 моль) н-бутиламина кипятят 6 ч. Избыток бутиламина отгоняют, остаток промывают дважды водой и экстрагируют бензолом. Бензольный раствор промывают водой и упаривают досуха. Остаток (масло) растворяют в 30 мл ацетона и прибавляют концентрированную соляную кислоту до pH 1. Осадок отфильтровывают, промывают эфиром. Выход 4,3 г (65%). Т. пл. 210-211oC (из изопропилового спирта). Найдено,%: C 65,24; H 10,54; N 8,51; Cl 10,66. C18H35ClN2O. Вычислено,%: C 65,33; H 10,66; N 8,46; Cl 10,77. Пример 11. Гидрохлорид дициклогексиламида изо-бутиламиноуксусной кислоты (IV.11). Смесь 5,16 г (0,02 моль) дициклогексиламида хлоруксусной кислоты и 14,6 г (0,2 моль) изобутиламина кипятят 6 ч. Реакционную массу упаривают досуха. Толуольный раствор испаряют до половины объема и к остатку прибавляют этилацетат, насыщенный хлористым водородом. Выпавший кристаллический осадок оставляют на сутки в холодильнике, затем отфильтровывают, промывают эфиром и высушивают в вакууме при 70oC. Выход 5,6 г (84,7%). Т. пл. 240-241oC (из изопропилового спирта). Найдено,%: C 65,36; H 10,72; N 8,33, Cl 10,91. C18H35ClN2O. Вычислено,%: C 65,33; H 10,66; N 8,46; Cl 10,71. Пример 12. Гидрохлорид дициклогексиламида




IV.11>IV.10>IV.12>IV.14>IV.6>6=IV.9>IV.7>IV.4>IV.8
Аконитиновую аритмию вызывали у бодрствующих крыс массой 180-200 г, вводя в хвостовую вену раствор аконитина в дозе 30-40 мкг/кг. При этом возникали нарушения ритма смешанного предсердно-желудочкового характера, представляющие собой обычно политопную экстрасистолию. Заявляемые соединения вводили внутривенно за 1-3 мин до введения аконитина. Как видно из таблицы 2, большинство заявляемых соединений оказались весьма эффективны в предотвращении аритмий на этой модели, значительно превосходя препараты I класса антиаритмического действия лидокаин, ханидин и новокаинамид, взятые для сравнения как эталонные препараты. В соответствии со средней эффективной дозой соединения можно расположить в следующей последовательности по убыванию антиаритмической активности:
IV.10>IV.11>IV.5>IV.6>IV.2=IV.1>IV.14
Для выявления антифибрилляторной активности соединений IV.1; IV.10 изучали их влияние на порог электрической фибрилляции желудочков, вызванной электрическим раздражением. Этот метод дает возможность сравнивать антифибрилляторные свойства соединений, имеющие важное значение в связи с необходимостью предупреждать возникновения фибрилляции желудочков вследствие электрической нестабильности миокарда и решать таким образом возрастающую в последние годы проблему внезапной смерти. Опыты проводили на кошках массой 2-3 кг, анестезированных нембуталом (35 мг/кг) при искусственном дыхании. После вскрытия грудной клетки и перикарда на миокард левого желудочка накладывали платиновые электроды. Электрическим раздражением от 3-канального электронного стимулятора SEN-7201 (Nihon Kohden, Япония) создавали "эктопический очаг возбуждения". Нарушения сердечного ритма (фибрилляцию желудочков) вызывали серией прямоугольных импульсов повышающейся интенсивности (20 импульсов в пачке), длительностью каждого 4 мс и частотой следования 50 Гц. За порог фибрилляции желудочков принимали минимальное количество мА раздражающего тока, вызывавшее фибрилляцию. Момент возникновения фиксировали по данным ЭКГ и падению артериального давления. Артериальное давление в бедренной артерии регистрировали с помощью электромонометра Elema (Швеция). ЭКГ регистрировали во II стандартном отведении на электрокардиографе ЭЛКАР-2 и координатном самописце анализатора Атаск-350 (Nihon Kohden, Япония), одновременно с записью пульсового давления. Исследуемые препараты вводили в бедренную вену в 10 мл физиологического раствора в течение 3 мин. Использовали дозы 4,5 и 8 мг/кг для лидокаина и 2 и 5 мг/кг для хинидина. Дефибрилляцию производили с помощью конденсаторного разряда заданной интенсивности, подаваемого непосредственно на миокард от дефибриллятора ДИ-03. Как видно из результатов, представленных в таблице 3, изученные соединения IV. 1; IV.10 обладают выраженными антифибрилляторными свойствами. Они повышают порог более интенсивно и длительно, чем препарат сравнения лидокаин, практически единственный препарат, широко используемый в клинике для лечения угрожающих жизни аритмий у постинфарктных больных и для предупреждения внезапной смерти. Желудочковые нарушения ритма, вызванные окклюзией нисходящей ветви левой коронарной артерии, получают у бодрствующих собак, оперированных по методу Harris (1950). Опыт многих фармакологических лабораторий мира показывает, что соединения, демонстрирующие активность на этой модели, оказываются высокоэффективными в клинике и выявляют антиаритмические свойства I класса подавляющих фракцию постоянного уровня натриевых токов в деполяризованных ишемией миокардиальных клетках. Опыты ставили на собаках массой 8-15 кг. Животных анестезировали нембуталом (35 мг/кг внутривенно), после интубации переводили на искусственное дыхание, фиксировали на операционном столе в положении на правом боку. В асептических условиях вскрывали грудную клетку в четвертом межреберье слева. Перикард надрезали, выделяли нисходящую ветвь левой коронарной артерии на 2-3 см ниже левого края ушка. Параллельно оси артерии накладывали инъекционную иглу N20. Первую лигатуру завязывали на игле, что создавало после изъятия иглы уменьшение циркуляции крови в нижележащем участке миокарда. Вторую лигатуру завязывали наглухо через 30 мин после первой. Рану послойно зашивали, вводили антибиотики. Во время операции производили запись ЭКГ во II стандартном отведении, производили постоянное мониторное наблюдение. В яремную вену вживляли полиэтиленовые катетеры, заполненные гепарином, катетеры подкожно выводили на шею в области затылка. Через 24 ч в опыт брали только животных, находящихся в удовлетворительном состоянии и имевших устойчивые желудочковые нарушения ритма. Исследуемые вещества вводились медленно в яремную вену в 10 мл физиологического раствора. Эффективность веществ оценивали по их способности восстанавливать нормальный синусовый ритм, а также по степени уменьшения частоты эктопических возбуждений желудочков. При статистической обработке результатов использовали t-тест Стьюдента. Исследовали влияние наиболее активных из выявленных ранее соединений IV. 1 в дозах 3,3 и 8 мг/кг и IV.10 в дозах 3,3; 5,0 и 6,6 мг/кг при внутривенном введении в 10 мл физиологического раствора. Эффективность соединений на этой модели сравнивали с эффективностью лидокаина, действовавшего в дозах 5 и 8 мг/кг. За положительный антиаритмический эффект принимали снижение эктопических сокращений на 50% и более. Всего было проведено 27 опытов в этой серии. При внутривенном введении соединения IV. 10 в дозе 5 мг/кг уже на 1-й минуте действия эктопические сокращения устраняются полностью, а общее число сокращений сердца снижается на 30%. Как видно на фиг. 1, стойкий антиаритмический эффект поддерживается в течение более 30 мин (нижние графики). На 45 минуте процент эктопических сокращений возвращается к исходному. Лидокаин в эквимолярной дозе значительно уступает по активности соединению IV.10. В этой дозе это соединение уменьшает общее число сердечных сокращений в среднем на 6% и продолжительность подавления эктопических сокращений составляет более 30 мин. Продолжительность эффекта лидокаина была не более 15 мин. Соединение IV.1 в дозе 3,3 мг/кг через 5 мин после внутривенного введения снижало общее число сердечных сокращений на 13% и число эктопических сокращений на 30-8%. В большей дозе 8 мг/кг и это соединение уменьшает общее число сердечных сокращений на 13%, а, эктопических возбуждений желудочков на 42-100%, в то время как лидокаин в этой дозе уменьшает общее число сердечных сокращений на 8%, а эктопических - на 70%. Продолжительность антиаритмического эффекта - 30 мин. Как видно на фиг. 2, соединение IV.1 (нижние графики - сплошные линии) значительно превосходит по антиаритмической активности лидокаин (верхние графики - пунктир). Таким образом, наиболее активные соединения IV.1 и IV.10 обладают выраженными антиаритмическими свойствами I "В" класса. Как известно, аритмогенный эффект BaCl связан с уменьшением калиевой проводимости, поэтому хлоридбариевая модель аритмии рассматривается адекватной для появления свойств III класса антиаритмического действия. Опыты проводили на бодрствующих кроликах обоего пола весом 2-4 кг по методу, описанному L. Szektres and Gy.J. Papp (1971). Кроликам вводили 4 мг/кг BaCl в краевую ушную вену в виде 2%-ного раствора в течение 1 мин. В ответ на внутривенное введение раствора BaCl после латентного периода длительностью несколько секунд возникают нарушения сердечного ритма в виде политеопной желудочковой экстрасистолии, которые продолжаются до 30 мин. ЭКГ регистрировали во II стандартном отведении каждую минуту в течение 15 минут. Запись ЭКГ производили каждую минуту в течение 12 с. В последующие опыты брали тех кроликов, у которых на каждой минуте в течение 15 мин была хотя бы одна экстрасистола. Так как BaCl является очень токсичным веществом и выводится из организма медленно, то отобранных в контрольных опытах кроликов выдерживали перед экспериментом в течение 3-4 дней. Затем им вводили 4 мг/кг BaCl в течение 1 мин. Регистрировали аритмию на ЭКГ после введения раствора BaCl в течение 1-й и 2-й минуты, а затем вводили исследуемое вещество в виде 1%-ного раствора в течение 30 с. Регистрировали ЭКГ на каждой минуте в течение 15 мин. Эффект соединения оценивали по способности восстанавливать нормальный синусовый ритм в течение 1-й или более минут. На каждом кролике, подобранном в контроле, смотрели 3-5 доз соединения с интервалом 3-4 дня. Антиаритмик III класса сематилид, взятых нами в качестве эталона, в дозе 2,5-5,0 мг/кг устранял аритмию, вызванную внутривенным введением хлорида бария. Наиболее активный из заявляемых соединений IV.10 оказался эффективным в диапазоне доз 0,125-0,25 мг/кг, что свидетельствует о его значительно более высокой эффективности на этой модели.
Формула изобретения


где R1 - водород или низший алкил;
R2 и R3 - одинаковые или различные и означают водород, низший алкил, окси(низший алкил), аминоэтил, циклогексил, либо R2 и R3 вместе с несущим их атомом азота составляют насыщенный 6- или 7-членный гетероцикл, который может содержать дополнительно атом азота или кислорода, либо означают пиперазин, в котором атом азота в 4-ом положении и соседний атом углерода соединены пропиленовой группой,
или их фармацевтически приемлемые соли кислотного присоединения, или их четвертичные соли.
РИСУНКИ
Рисунок 1, Рисунок 2, Рисунок 3, Рисунок 4