Измеритель несущей частоты радиосигналов
Изобретение относится к области радиоизмерений и может быть использовано для определения несущей частоты высокочастотных и сверхвысокочастотных колебаний. Измеритель несущей частоты основан на одном четырехвходовом и трех двухвходовых коммутаторах, разветвителе, двух раздвоителях с различной разностью длин выходных плеч, двух идентичных фазоизмерительных каналах, состоящих из фазорасщепителя с 2N выходными, N сумматоров и детекторов, трех калибровочных генераторах, блоке считывания в составе многовходового преобразователя аналог-код, микропроцессора, субблоков памяти и индикации, субблока управления. При появлении на входе коммутатора 1 (фиг.1) сигнала с неизвестной частотой он делится поровну разветвителем 2, затем еще пополам раздвоителем 3 и поступает на входы фазоизмерительных каналов 4, где происходит преобразование фазовых соотношений в амплитудные. По амплитудам напряжений на выходах этих каналов микропроцессор 13 блока считывания 11 осуществляет вычисление измеряемой частоты. В измерителе предусмотрен режим калибровки, в котором для требуемого диапазона частот производится устранение отличия между реальными и идеальными функциями преобразования, связывающими значения напряжений на выходах детекторов со значением частоты на входе, путем определения значений коэффициентов полинома, описывающего вид функции преобразования соответствующего выхода фазоизмерительных каналов и запоминания их для каждого выхода. Это уменьшает систематические ошибки измерений, связанные с асимметрией мостовых схем по переходному ослаблению, неидентичностью путей прохождения сигналов до диодов и их вольт-амперных характеристик, а также флуктуацией этих характеристик из-за температуры и естественного старения. 1 з.п. ф-лы, 2 ил.
Устройство относится к технике радиоизмерений и предназначено для измерения несущей частоты радиосигналов.
Известны измерители несущей частоты радиосигналов (авт. св. СССР NN 214354, 460511, 511550, 1193596, 1363062, 1472838, кл. G 01 R 23/00 и другие) Наиболее близким по технической сущности к предлагаемому устройству (прототипом) является измеритель несущей частоты радиосигналов (авт. св. N 1193596, кл. G 01 R 23/00), содержащий разветвитель, два раздвоителя с различной разностью длин выходных плеч, входы которых соединены с выходами разветвителя, два идентичных фазоизмерительных канала, подключенных соответственно к выходным плечам раздвоителей и состоящих из фазорасщепителя входных сигналов с 2N парами выходов, соединенных с двухвходовыми сумматорами, выходы которых соединены с входами квадратичных детекторов, и блока считывания в составе многовходового преобразователя аналог-код, входы которого соединены с соответствующими выходами детекторов, а выходы с соответствующими входами микропроцессора, и связанных с ним блоков памяти и индикации. Устройство осуществляет преобразование частоты сигнала, действующего на входе, в значение постоянного напряжения на выходе детекторов, по которым определяется значение измеряемой частоты. Недостатком известного устройства является следующее: реальные функции преобразований, связывающие значение напряжения на выходе детекторов со значениями частоты сигнала на входе, в реальных условиях существенно отличаются от идеальных, теоритически известных. Это обусловлено асимметрией мостовых схем по переходному ослаблению, неидентичностью вольт-амперных характеристик СВЧ-диодов, флюктуацией этих характеристик из-за температуры и естественным старением диодов. Данное отличие приводит к появлению систематических погрешностей измерений частоты радиосигналов, что снижает точность измерителя несущей частоты радиосигналов. Целью изобретения является повышение точности измерения частоты измерителя за счет устранения отличия между реальными и идеальными функциями преобразования, связывающими значения напряжений на выходах детекторов со значением частоты на входе. Указанная цель достигается тем, что в измеритель несущей частоты радиосигналов введены четыре электрически управляемых коммутатора, три калибровочных генератора, выходы детекторов первого фазоизмерительного канала снабжены дополнительными выводами, а в блок считывания введен субблок управления. Отличие предлагаемого измерителя несущей частоты радиосигналов от известного заключается во введении новых элементов: одного четырехвходового и трех двухвходовых электрически управляемых коммутаторов, трех калибровочных генераторов, субблока управления и наличия новых связей, связанных с введением указанных элементов. Указанные отличия обеспечивают достижение положительного эффекта - повышения точностных характеристик измерителя в реальных условиях эксплуатации. На фиг.1 представлена структурная схема измерителя; на фиг.2 изображены реальные и идеальные функции преобразования первого и второго фазоизмерительных каналов. Измеритель несущей частоты радиосигнала, далее просто измеритель, содержит (фиг.1) четырехвходовой электрически управляемый коммутатор 1, первый вход которого является входом измерителя, разветвитель 2, вход которого соединен с выходом коммутатора 1, два раздвоителя 3 с различной разностью длин выходных плеч, входы которых соединены соответственно с выходами разветвителя 2, два идентичных фазоизмерительных канала 4, подключенных к выходным плечам раздвоителей 3 и состоящих из последовательно соединенных фазорасщепителя 5 входных сигналов с 2N парами выходов, двухвходовых сумматоров 6 и квадратичных детекторов 7, три калибровочных генератора 8, выходы которых соединены соответственно с входами первого, второго и третьего двухвходовых коммутаторов 9, первые выходы которых соединены соответственно с вторым, третьим и четвертым входами коммутатора 1, согласованные нагрузки 10, соединенные входами с вторыми выходами коммутаторов 9, блок считывание 11, состоящий из аналого-цифрового преобразователя (АЦП) 12, входы которого соединены с выходами квадратичных детекторов 7 первого и второго фазоизмерительных каналов, а выходы с соответствующими входами микропроцессора 13, связанных с микропроцессором 13 субблока памяти 14 и субблока индикации 15, первый, второй, третий и четвертый синхровыходы микропроцессора 13 соединены с соответствующими синхровходами субблока управления 16. Первый синхровыход субблока управления 16 соединен с управляющим входом коммутатора 1, второй, третий и четвертый синхровыходы с управляющими входами первого, второго, третьего коммутаторов 9, соответственно пятый синхровыход с синхровходом преобразователя 12, шестой синхровыход с соответствующим синхровходом микропроцессора 13. Субблок управления 16 состоит из N компараторов 17, входы которых являются входами субблока управления, N/2 двухвходовых схем "ИЛИ" 18, первого вентиля 19, второго вентиля 20, счетчика 21, дешифратора 22, первого триггера 23, третьего вентиля 24, четвертого вентиля 25, трехвходовой схемы "ИЛИ" 26, второго триггера 27, пятого вентиля 28. При этом, выходы компараторов 17 соединены с входами N/2 схем "ИЛИ" 18, выходы которых соединены с входами первого вентиля 19, вход которого соединен с первым входом третьего вентиля 24. Первый вход второго вентиля 20 является первым синхровходом субблока управления и соединен с вторым входом третьего вентиля 24, выход второго вентиля 20 соединен с первым входом счетчика 21 и вторым входом пятого вентиля 28. Второй вход счетчика 21 является вторым синхровходом субблока управления и соединен также с вторым входом дешифратора 22 и входом первого тригера 23. Первый вход дешифратора 22 соединен с выходом счетчика 21, первый, второй, третий выходы дешифратора 22 являются соответственно вторым, третьим, четвертым синхровыходами субблока управления. Первый выход первого триггера 23 является первым синхровыходом субблока управления и соединен также с вторым входом вентиля 20. Второй выход первого триггера 23 является шестым синхровыходом субблока управления. Первый вход четвертого вентиля 25 соединен с выходом третьего вентиля 24, а второй вход с вторым выходом второго триггера 27. Первый и третий входы схемы "ИЛИ" 26 являются соответственно третьим и четвертым синхровходами субблока управления, а выход соединен с входом второго триггера 27. Первый вход пятого вентиля 28 соединен с первым выходом второго триггера 27, а выход является пятым синхровыходом субблока управления и соединен также с вторым входом схемы "ИЛИ" 26 и выходом четвертого вентиля 25. Устройство работает следующим образом. Входной сигнал, который в зависимости от выбранного режима работы может поступать как от внутренних калибровочных генераторов 8 (фиг. 1), так и от внешнего источника, через коммутатор 1, разветвитель 2 подается на вход первого и второго раздвоителей 3. Разность расстояний















где fmin левая граница измеряемого поддиапазона (f1 на фиг.2,b)


где fmin левая граница поддиапазона однозначного определения частоты (



Fi(f) =

где a(kij) j-й коэффициент полинома, описывающего вид функции преобразования i-го выхода k-го фазоизмерительного канала (k 1, 2);4 f - частота. Системы (2) и (2, а) примут вид:

Значение коэффициентов a(kij) соответствующего полинома определяются на этапе калибровки измерителя перед началом измерений в процессе эксплуатации. Для этого используются три калибровочных генератора 8, настроенных на заранее известные частоты, например на частоты начала, середины и конца измеряемого диапазона



где Uik значение измеряемого напряжения на i-м выходе k-го фазоизмерительного канала;
f1, f2, f3 частоты, генерируемые соответственно первым, вторым, третьим генераторами. Неизвестными в данных системах являются коэффициенты полинома a(kij)значения которых определяются из выражений


Полученные значения коэффициентов a(kij) полиномов заносятся в ПЗУ 14. Таким образом, алгоритм определения частоты в микропроцессоре 13 состоит из следующей последовательности операций:
1. Определение значений коэффициентов a(kij) полиномов, описывающих вид функции преобразования соответствующего выхода первого и второго фазоизмерительных каналов по выражениям (7),(8),(9). 2. Определение частоты измеряемого сигнала в первом фазоизмерительном канале путем решения системы (5), и используя выражение (3). 3. Определение номера и начала fminj сектора измерений второго фазоизмерительного канала, которому принадлежит значение частоты, полученное в пункте 2. 4. Определение точного значения частоты входного сигнала во втором фазоизмерительном канале путем решения системы (5,а) и используя выражение (3, а). Рассмотрим более подробно работу цифровой части измерителя с точки зрения синхронизации и последовательности проведения операций. Первый этап этап калибровки измерителя, при котором определяются значения коэффициентов полиномов a(kij) по выражениям (7), (8), (9). При подаче питающих напряжений начинает работать тактовый генератор микропроцессора 13, вырабатывающий импульсы с частотой Fт, сигнал с второго выхода микропроцессора поступает на вход первого триггера 23, сигнал с выхода Q=1 первого триггера 23 поступает на первый вход второго вентиля 20 и параллельно на управляющий вход коммутатора 1, который подключает к входу устройства (разветвителю 2) первые выходы первого, второго, третьего коммутаторов 9. При этом первый тактовый импульс микропроцессора 13 через открытый второй вентиль 20 поступает на первый вход счетчика 21, в результате чего на первом выходе дешифратора 22 образуется единичный уровень, который переключит выход первого калибровочного генератора 8 на первый выход коммутатора 9 и далее через коммутатор 1 на вход разветвителя 2. Сигнал калибровочного генератора 8 с выходов фазоизмерительных каналов 4 поступит на входы АЦП 12 и одновременно через дополнительные выводы на входы коммутаторов с противофазными сигналами объединены схемами "ИЛИ" 18, то на выходе первого вентиля 19 при наличии сигналов на выходе детекторов 7 образуется единичный уровень, который через открытый третий вентиль 24 и открытый четвертый вентиль 22 поступает на пятый синхровыход субблока управления 16 и далее на управляющий вход АЦП 12, в результате чего АЦП 12 производит цикл преобразований напряжений сигналов, действующих на его входах, в цифровые коды, которые поступают в микропроцессор 13 для последующей обработки. Одновременно этот же тактовый импульс через трехвходовую схему "ИЛИ" 26 поступает на второй триггер 27 и перебрасывает его, в результате чего закрывается вентиль 25 (так как на входе Q триггера 27 будет нулевой уровень Q=0) и открывается вентиль 28. С приходом очередного тактового импульса на вход разветвителя 2 подключается соответствующий калибровочный генератор 8. В период между тактовыми импульсами цифровые коды, поступающие в микропроцессор 13 с АЦП 12, записываются в оперативную память. После прохождения третьего тактового импульса, импульс с второго выхода микропроцессора 13 подается на вход первого триггера 23, перебрасывает его, в результате чего закрывается вентиль 20, обнуляется счетчик 21 и переключается коммутатор 1, подключая к входу разветвителя 2 первый вход, на который приходят измеряемые сигналы. С этого момента заканчивается первый этап этап калибровки и начинается второй этап этап определения коэффициентов интерполяционных многочленов по выражениям (7)-(9). Код частот, на которые настроены калибровочные генераторы 8, хранится в ПЗУ. Второй этап начинается с момента переброса триггера 23, когда на его выходе

1. Фальковский О.И. Техническая электродинамика, М. Связь, 1978, 325 с. 2. Гранкин И.М. Ищенко И.А. Ясинский В.Л. К анализу широкополосных четырехдетекторных фазоизмерительных систем, Изв. вузов МВ и ССО СССР. Радиоэлектроника, 1968, N 4, с.322. 3. Качаловский В. В. Цифровые измерительные устройства, М. Энергоатомиздат, 1985, 273 с. 4. Интегральные микросхемы (под. ред. Тарабрина Б.В.), М. Энергоатомиздат, 1985, 243 с. 5. Корнейчук В.И. и др. Вычислительные устройства на микросхемах, Киев: Техника, 1989. 270 с. 6. Зельдин Е.А. Цифровые интегральные микросхемы в информационно-измерительной аппаратуре, М. Энергоатомиздат, 1985, 273 с. 7. Якубовский С.В. Ниссенсон А.И. и др. Цифровые и аналоговые микросхемы. Справочник (под ред. Якубовского С.В.), М. Радио и связь, 1990, 320 с. 8. Якубовский С. В. Барканов Н.Л. и др. Аналоговые и цифровые ИМС, М. Радио и связь, 1964. 312 с.
Формула изобретения
РИСУНКИ
Рисунок 1, Рисунок 2