Производные цефалоспорина и их фармакологически приемлемые нетоксичные соли, физиологически гидролизуемые сложные эфиры, син-изомеры и оптические изомеры и способ их получения
Новые производные цефалоспорина формулы (I) где R1 - водород или радикал для защиты аминогруппы; R2 и R3 - независимо водород или радикал для защиты гидроксигруппы, или совместно образуют циклическую защищающую диол группу; R4 и R5 - независимо водород или радикал для защиты карбоксила; X и Y - соответственно азот и углерод или соответственно углерод и азот; R6 и R7 - независимо водород, аминогруппа, замещенная аминогруппа, гидроксигруппа, алкоксигруппа, C1-C4-алкил, карбоксил или алкоксикарбонил, или совместно с атомом углерода, к которому они присоединены, образуют C3-C7-циклоалкил, когда X и Y - соответственно азот и углерод, или R7 - водород или аминогруппа, когда X и Y - соответственно атом углерода и азота; Q - =CH- или =N-, или их фармацевтически приемлемые нетоксичные соли, их физиологически гидролизуемые сложные эфиры, гидраты и сольваты и их изомеры обладают широким спектром высокой антибактериальной активности. 2 с и 3 зп. ф-лы, 2 ил. , 2 табл.
Изобретение относится к новым производным цефалоспорина и к их фармацевтически приемлемым нетоксичным солям сольватам и изомерам, обладающим широким спектром заметной антибактериальной активности. Изобретение относится также к способам получения подобных соединений и к фармацевтическим препаратам, содержащим эти соединения в качестве активных компонентов.
Антибиотики цефалоспоринового ряда широко применяются при лечении заболеваний, вызванных обычными патогенными бактериями у человека и животных. Обнаружено, в частности, что такие антибиотики применимы для лечения заболеваний, вызванных бактериями, обладающими устойчивостью к другим антибиотикам, например, устойчивыми к пенициллину бактериями, а также для лечения больных со сверхчувствительностью к пенициллину. В большинстве случаев желательно применение антибиотиков, обладающих широким спектром антибактериальной активности, например, активностью как против грамположительных, так и грамотрицательных бактерий. Хорошо известно, что активность цефалоспоринового соединения в целом зависит от заместителя в 3- или 7-положении цефемового цикла. В этой связи проведены многочисленные исследования, направленные на создание цефалоспориновых антибиотиков с широким спектром антибактериальной активности введением 7-

где
Ra представляет водород или органическую группу;
Rb представляет одновалентную этерифицированную органическую группу;
B представляет S или S___

P представляет органическую группу. После открытия таких соединений создание многочисленных соединений-антибиотиков с улучшенной эффективностью по отношению к определенным микроорганизмам, особенно против грамположительных бактерий, в том числе соединения, раскрытые в патенте Великобритании (GB) N 1522140 формулы (В) и существующие в виде син-изомера или в виде смеси син- и анти-изомеров, причем син-изомер присутствует в количестве по меньшей мере 90%

где
Rc представляет фурил или тиенил;
Rd представляет C1-C4-алкил, C3-C4-циклоалкил, фурилметил или тиенилметил и
Re представляет водород, карбамоил, карбоксиметил, сульфонил или метил. Впоследствии дальнейшие попытки были направлены на получение новых и улучшенных производных цефалоспорина с антибактериальными свойствами, как против грамположительных, так и против грамотрицательных бактерий, и в результате были созданы производные цефалоспорина с модифицированной структурой, аналогичной формулам (А) и (В). Например, патент Бельгии N 852427 раскрывает цефалоспориновые антибиотики формулы (А), в которой заместитель Ra представлен различными органическими группами, в том числе 2-аминотиазол-4-илом и кислород оксиаминогруппы присоединен к алифатическому углероду, который, в свою очередь, может быть замещен карбоксилом, и заместитель в 3-положении представлен ацилоксиметилом, гидроксиметилом, формилом или необязательно замещенной гетероциклической тиометильной группой. Изучение соединений, обладающих сильной антибактериальной активностью против некоторых грамотрицательных бактерий, продуцирующих



где
Rf представляет водород или радикал для защиты аминогруппы;
Rg и Rh представляют соответственно водород, кислород или метил, карбоксил или радикал для защиты карбоксила;
Ri и Rj представляют соответственно водород или кислород;
Rk представляет водород или радикал для защиты карбоксила;
a, b и c независимо 0 или 1;
X представляет водород, гидроксил или группу формул:

Y представляет водород или азот, и
Z представляет галоген, ацетоксигруппу или гетероциклическую группу. В заявке на Европейский патент N 87308525.2 даются производные цефема формулы (D):

где
R1 представляет водород или радикал для защиты аминогруппы;
Rm и Rn независимо представляют гидроксигруппу или замещенную гидроксигруппу или могут быть связаны друг с другом с образованием защищенного диола;
Ro и Rp независимо представляют водород или радикал для защиты карбоксила;
Rq представляет водород или C1-C4-алкил, замещенный 1-3 галогенами;
Z представляет S или S ___

пунктирная линия представляет соединения 2-цефема или 3-цефем. В заявке на патент Германии N 2714880.7 раскрыты производные цефалоспорина формулы (E):

где
Rr представляет водород, замещенный или незамещенный алкил, ацил, арилсульфонил, алкилсульфонил или радикал для защиты аминогруппы;
Rs представляет водород, замещенный или незамещенный алкил, алкенил, алкинил, циклоалкил, аралкил, ацил, арил, алкилсульфонил, арилсульфонил или гетероциклическую группу;
Rt представляет водород, сложноэфирную группу или анион;
Ru представляет водород или низшую алкоксигруппу;
X представляет X, O, CH2 или NH и
A представляет водород, галоген, замещенную или незамещенную алкенилоксигруппу или -CH2Y, где Y представляет водород, галоген или фрагмент циклического соединения. Неожиданно обнаружено, что производные цефема, имеющие необязательно замещенную 4- и/или 6-аминопиримидилтиометальную группу в 3-положении и (Z)-2-(2-аминотиазол-4-ил)-2-(


где
R1 представляет водород или радикал для защиты аминогруппы;
R2 и R3 независимо представляют водород или радикал для защиты гидроксигруппы или образуют совместно циклическую защищающую диол группу;
R4 и R5 независимо представляют водород или радикал для защиты карбоксила;
X и Y представляют соответственно атом азота и углерода или соответственно атом углерода и азота;
R6 и R7 независимо представляют водород, аминогруппу, замещенную аминогруппу, гидроксигруппу, алкоксигруппу, C1-C4-алкил, карбоксил или алкоксикарбонил, или совместно с атомом углерода, к которому они присоединены, образуют C3-C7-циклоалкил, когда X и Y соответственно азот и углерод, или R7 представляет водород или аминогруппу, когда X и Y соответственно углерод и азот, и
Q представляетCH- илиN-. В соответствии с другим аспектом изобретения предложены способы получения производных цефалоспорина формулы (I). Согласно еще одному аспекту настоящего изобретения предложены фармакологически приемлемые токсичные соли, физиологически гидролизуемые сложные эфиры, гидраты и сольваты соединений формулы (I). И еще одним аспектом настоящего изобретения предложены фармакологические композиции, содержащие в качестве активных компонентов одно или несколько производных цефалоспорина формулы (I) и их вышеупомянутых производных и фармацевтически приемлемые носители. Новые производные цефалоспорина формулы (I) включают как син-изомеры, так и смеси син- и анти-изомеров, причем смеси содержат по меньшей мере 90% син-изомера, а также их вышеупомянутые производные. В формуле (I) углерод, к которому присоединен 3,4-замещенный фенил, является асимметричным центром, ведущим к появлению диастереомеров, которые также охватываются объемом настоящего изобретения вместе с их смесями. Кроме того, соединения формулы (I) настоящего изобретения могут существовать в таутомерных формах и такие таутомеры также охватываются объемом настоящего изобретения. А именно, когда Q группа CH, аминотиазолильная группа подвергается таутомеризации с превращением в иминотиазолильную и образованием таутомеров, что можно представить следующим образом:

2-аминотиазол-4-ил 2-иминотиазолин-4-ил
Когда Q является N, аминотиадиазольная группа образует таутомеры с иминотиадиазолиновой группой, что также входит в объем изобретения и что можно представить следующим образом:

5-амино-1,2,4- 5-имино-1,2,4- 5-имино-1,2,4- тиадиазол-3-ил тиадиазолин-3-ил тиадиазолин-3-ил
Из соединений настоящего изобретения предпочтительны те соединения, в которых все R1, R4 и R5 водород, R2 и R3 независимо водород или ацетил, R6 водород или метил, R7 - водород или аминогруппа, или они образуют циклопентановый или циклогексановый цикл, когда X и Y соответственно атом азота и углерода, или R7 водород или аминогруппа, когда X и Y соответственно атом углерода и азота. К соответствующим фармакологическим приемлемым солям производных цефалоспорина (I) относятся обычные нетоксичные соли, которые могут включать соли неорганических кислот: (например: гидрохлорид, гидробромид, сульфат, фосфат и т. д.), соли органических карбоновых и сульфоновых кислот (например: формат, трифторацетат, цитрат, ацетат, малеат, тартрат, оксалат, сукцинат, бензоат, фумарат, манделат, аскорбат, малат, метансульфонат, п-толуолсульфонат и т. д. ) и соли органических и неорганических оснований, например, соли с гидроксидами щелочных металлов (например: гидроксидом натрия, гидроксидом калия и т.д.), карбонатами щелочноземельных или щелочных металлов (например: бикарбонатом натрия, бикарбонатом калия, карбонатом натрия, карбонатом калия, карбонатом кальция и т.д.), и соли аминокислот. Физиологически гидролизуемые сложные эфиры соединений (I) включают, например: инданиловый, фталидиловый, метоксиметиловый, пивалоилоксиметиловый, глицилоксиметиловый, фенилглицилоксиметиловый и 5-метил-2-оксо-1,3-диоксанал-4-илметиловый эфир и другие физиологически гидролизуемые эфиры, широко применяемые в областях пенициллиновых и цефалоспориновых антибиотиков. Такие соли и сложные эфиры могут быть получены известными в данной области способами. Соединение формулы (I) может быть получено реакцией соединения формулы (II) с соединением формулы (III) в присутствии растворителя и при необходимости удаления защищающих аминогруппу или карбоксил радикалов или восстановлением группы S ____


где
от R1 до R7, X, Y и Q принимают вышеуказанные значения:
L представляет уходящую группу и
m 0 или 1. Радикалы для защиты аминогруппы в R1 могут быть представлены радикалами, легко удаляемыми в обычно необходимых мягких условиях с образованием свободной аминогруппы, и могут включать: ацил, замещенный или незамещенный арил (низший) алкил (например: бензил, дифенилметил, трифенилметил), (низший) алкокарил (например: 4-метоксибензил), галоген (низший) алкил (например: трихлорметил и трихлорэтил), тетрагидропиранил, замещенную фенилтиогруппу, замещенный алкилиден, замещенный аралкилиден, замещенный циклоалкилиден. Ацильная группа в качестве радикала для защиты аминогруппы может включать, например: C1-C5-алканоил (например: формил и ацетил) и арил (низший) алкоксикарбонил (например: бензилоксикарбонил), причем ацильная группа может быть замещена 1-3 заместителями, например: галогенами, гидроксигруппами, цианогруппами и нитрогруппами. Кроме того, радикалы для защиты аминогруппы могут включать продукты реакции, образующиеся в реакции аминогруппы с соединениями кремния, бора и фосфора. Радикалы для защиты гидроксигруппы в R2 или R3 могут включать, например: ацил /например: формил или -CORa, где Ra - C1-C8-алкил (напр. ацетил)/, алкоксикарбонил /например: -CO2Ra, где Ra C1-C8-алкил/, силил /например: (C1-C4-алкил) силил (напр. триметилсилил и трет-бутилдиметилсилил)/, борат и фосфат /-B(ORb) или -P(O)(ORb)2, где Rb C1-C4-алкил/, и циклические защищающие диол группы, образованные обеими R2 и R3, включающие, например: C1-C7-алкилиндендиоксигруппу (например: метилендиокси-, этилендиокси- или изопропилидендиоксигруппу), замещенную алкилидендиоксигруппу (например: метоксиметилендиокси-, дифенилметилендиокси- или карбонилдиоксигруппу), циклический борат (например: -OB(OH)O-), циклический фосфат (например: -OP(O)-(OH)O- или -OP(O)(ORb)O-, где Rb C1-C4-алкил) и ди(C1-C4-алкил)силилдиоксигруппу (например: диметилсилилдиоксигруппу). Радикалы для защиты карбоксила в R4 или R5 могут быть представлены любым из тех радикалов, которые могут быть легко удалены в обычных мягких условиях с образованием свободной карбоксильной группы, в том числе, например: низшие алкиловые эфиры (например: метиловый эфир и трет-бутиловый эфир), низшие алкениловые эфиры (например: виниловый эфир и аллиловый эфир), низшие алкокси (низшие) алкиловые эфиры (например: метоксиметиловый эфир), галоген (низшие) алкиловые эфиры (например: 2,2,2-трихлорэтиловый эфир), замещенные и незамещенные аралкиловые эфиры (например: бензиловый эфир и П-нитробензиловый эфир) и силиловые эфиры. Радикалы для защиты аминогруппы, гидроксигруппы, циклического диола или карбоксила могут быть соответствующим образом подобраны с учетом химических свойств целевого соединения (I). Уходящая группа L в формуле (II) может включать, например: галоген, такой как хлор, фтор или иод, низшую алканоилоксигруппу, такую как ацетоксигруппа, низшую алкансульфонилоксигруппу, такую как метансульфонилоксигруппу, аренсульфонилоксигруппу, такую как п-толуолсульфонилоксигруппу, алкоксикарбонилоксигруппу и т.п. Термин "низший", применяемый здесь и далее в описании, например, со ссылкой на "низший алкил", относится к соединениям, имеющим 1-6 атомов углерода, более предпочтительно 1-4 атомов углерода. Пунктирная линия в формуле (II) соединения, являющегося исходным продуктом, в синтезе производных цефалоспорина, представляет простую или двойную связь, т.е. соединения формулы (II) могут быть соединениями формулы (II-a) или соединениями формулы (II-b) или их смесью, которые приведены в конце описания. где
R1-R5, Q, m и L принимают вышеуказанные значения. Соединения формулы (II) могут быть получены активированием соединения формулы (IV) или его соли ацилирующим средством с последующей реакцией с соединением формулы (V) согласно следующей схеме (A), которая приведена в конце описания. где
R1-R5, m и L принимают вышеуказанные значения. Пунктирная линия в формуле (V) представляет простую или двойную связь, т. е. соединение формулы (V) может быть и соединением формулы (V-a), и соединением формулы (V-b) или их смесью:

где R5, m и L принимают вышеуказанные значения. Ацилированное производной соединения формулы (IV) может быть хлорангидридом кислоты, ангидридом кислоты, смешанным ангидридом кислоты (предпочтительно, ангидридом кислоты, образованным с метилхлорформатом, мезитиленсульфонилхлоридом, п-толуолсульфонилхлоридом или хлорфосфатом) или активированным эфиром (предпочтительно, эфиром, образованным в реакции с N-гидроксибензотриазолом в присутствии конденсирующего средства, например, дициклогексилкарбодиимида). Ацилирование может быть осуществлено применением соединения формулы (IV) в виде свободной кислоты в присутствии конденсирующего средства, например: дициклогексилкарбодиимида, карбонилдиимидазола. Кроме того, ацилирование удобно проводить в присутствии органического основания, например: третичного амина (предпочтительно, триэтиламина, диэтиламина и пиридина) или неорганического основания, например: бикарбоната натрия и карбоната натрия и растворителя, например: галогенированного углеводорода (например: хлористого метилена и хлороформа), тетрагидрофурана, ацетонитрила, диметилформамида, диметилацетамида и их смесей или их водных смесей. Ацилирование может быть осуществлено в температурном интервале от -50 до 50oC, предпочтительно от -30 до 20oC и ацилирующее средство может быть использовано в стехиометрическом количестве или в избытке (1,05-1,2 эквивалента) в пересчете на соединение формулы (V). Для получения соединения формулы (I) радикалы, защищающие аминогруппу или карбоксил в соединении формулы (IV), могут быть легко удалены любым обычным способом удаления защитной группы, широко известных в области цефалоспориновых антибиотиков. Например, применяют кислотный или щелочной гидролиз или восстановление. К примеру, если соединение формулы (II) в качестве защитной группы содержит амидогруппу, соединение может быть подвергнуто аминогалогенированию, аминоэтерифицированию и гидролизу. Кислотный гидролиз приемлем для удаления три(ди) ферилметила или алкоксикарбонила и может быть осуществлен применением органической кислоты, например: муравьиной кислоты, трифторуксусной кислоты или п-толуолсульфокислоты или неорганической кислоты, например: хлористоводородной кислоты. Реакцию введения соединения (III) в 3-положении соединения (II) с образованием соединения (I) проводят в присутствии растворителя или смеси растворителей, например, в присутствии низшего алкилнитрила (например: ацетонитрила и пропионитрила), низшего галогенированного алкана (например: хлорметана, дихлорметана и хлороформа), простого эфира, например, диметилформамида, сложного эфира, например этилацетата, кетона, например, ацетона, углеводорода, например, бензола, спирта, например, метанола и этанола, сульфоксида, например, диметилсульфоксида. Реакцию проводят в температурном интервале от -10 до 80oC, более предпочтительно от 20 до 40oC и соединения формулы (III) применяют в количестве 0,5-2 молярных эквивалентов, более предпочтительно 1-1,1 молярного эквивалента в пересчете на соединения формулы (II). Выделение и очистка соединений (I) могут быть осуществлены обычными способами, например, перекристаллизацией, колоночной хроматографией на силикагеле или ионообменной хроматографией. Соединения формулы (I) и их токсичные соли, например, соли щелочных металлов, щелочноземельных металлов с неорганическими кислотами, органическими кислотами или аминокислотами настоящего изобретения обладают широким спектром заметной активности против грамположительных бактерий и разнообразных грамотрицательных бактерий, в частности, против Pseudomonas. Кроме того, эти соединения отличаются высокой устойчивостью к

1-1. 7-/(Z)-2-(аминотиазол-4-ил)-2-(


1-2. 7-/(Z)-2-(аминотиазол-4-ил)-2-(


1-3. 7-/(Z)-2-(аминотиазол-4-ил)-2-(


1-4. 7-/(Z)-2-(аминотиазол-4-ил)-2-(


1-5. 7-/(Z)-2-(аминотиазол-4-ил)-2-(


1-6. 7-/(Z)-2-(аминотиазол-4-ил)-2-(


1-7. 7-/(Z)-2-(аминотиазол-4-ил)-2-(


Следующие препаративные примеры и Примеры иллюстрируют то, как могут быть получены исходные соединения формул (II) и (III) и соединения формулы (I). В примерах получены R- и S-диастереомеры, зависящие от стереоконфигурации асимметрического углерода, к которому присоединен 7

Стадия 1). Синтез (3,4-дигидроксифенил)-2-гидрокси-1,1,1-трихлорэтана
К раствору 440 г 1,2-дигидроксибензола в 1 л метиленхлорида добавляют моногидрат трихлорацетальдегида (1036 г) и образовавшийся раствор охлаждают до 0oC. К раствору по каплям прибавляют 102 г триэтиламина и нагревают до комнатной температуры. После перемешивания 20 мин реакционную смесь нагревают до 50oC и перемешивают при этой температуре 3 ч. По окончании реакции раствор испаряют при пониженном давлении с удалением хлористого метилена, а полученный остаток растворяют в 4 л этилацетата. Полученный раствор промывают 2400 мл 0,5 н.соляной кислоты и затем 2 л насыщенного раствора хлорида натрия. Раствор сушат над безводным сульфатом магния и перегонкой при пониженном давлении получают заглавное соединение. ЯМР ( d ацетон-d6): 5,2 (д, 1Н), 6 (д, 1Н), 6,8 (д, 1Н), 7 (дд, 1Н), 7,2 (д, 1Н), 1,9 (с, 1Н), 8 (с, 1Н). Стадия 2). Синтез a -трихлорметил-3,4-изопропилидендиоксибензилового спирта
В 2,5 л бензола растворяют 515 г полученного на стадии 1 соединения и к раствору добавляют 305 мл 2,2-диметоксипропана и 2,84 г пятиокиси фосфора. Реакционную смесь кипятят с обратным холодильником 2 ч. Реакцию проводят в реакторе, снабженном насадкой Сокслета, заполненной 600 г хлорида кальция для удаления образующего в качестве побочного продукта метанола. Спустя 2 ч добавляют 77 мл 2,2-диметоксипропана и кипячение с обратным холодильником продолжают еще 2 ч, охлаждают до комнатной температуры, несколько раз промывают 500 мл 1 н. водного раствора карбоната натрия и затем 500 мл насыщенного раствора хлорида натрия, сушат над безводным сульфатом магния и перегоняют при пониженном давлении. Очисткой полученного остатка колоночной хроматографией на силикагеле получают 220 г заглавного соединения. ЯМР ( d CDCI3): 1,66 (с, 6Н), 3,61 (д, 1Н), 4,98 (д, 1Н), 6,53-6,9 (м, 3Н). Стадия 3). Синтез 2-(3,4-0-изопропилидендиоксифенил)-2-гидроксиуксусной кислоты. В 500 мл воды растворяют 119,4 г моногидрата гидроксида лития и полученный раствор охлаждают до 0oC. К раствору добавляют 201 г полученного на стадии 2 соединения и 413 мл диоксана и полученную смесь перемешивают 3 дня при комнатной температуре. К смеси добавляют 240 г льда, перемешивают 30 мин с одновременным прибавлением 300 мл 6н. соляной кислоты и 120 г льда. Полученную смесь фильтруют, промывают 1,8 л воды и затем 700 мл хлороформа и после сушки в атмосфере азота получают 60 г заглавного соединения. ЯМР ( d ДМСО-d6): 1,61 (с, 6Н), 4,85 (с, 1Н), 6,6-6,83 (м, 3Н), 8,2 (ш. с, 2Н). Стадия 4). Синтез дифенилметилового эфира 2-(3,4-0-изопропилидендиоксифенил)-2-гидроксиуксусной кислоты
В 400 мл ацетона растворяют 50 г полученного на стадии 3 соединения и к раствору по каплям прибавляют 1 М раствор дифенилдиазометана в диэтиловом эфире до прекращения выделения газообразного азота. Реакционную смесь перемешивают еще 20 мин, перегоняют при пониженном давлении и очисткой колоночной хроматографией на силикагеле получают 70 г заглавного соединения. ЯМР ( d CDCI3): 1,69 (с, 6Н), 5,62 (д, 1Н), 6,2 (д, 1Н), 6,7 (д, 1Н), 6,87 (с, 1Н), 6,89 (д, 1Н), 6,97 (с, 1Н), 7,25 (Ш. IOH). Стадия 5). Синтез дифенилметилового эфира 2-бром-2-(3,4-0-изопропилидендиокси)уксусной кислоты
В 1,3 л диметилформамида растворяют 108 г полученного на стадии 4 соединения и полученный раствор охлаждают до -60oC. К раствору добавляют 187,4 г трехбромистого фосфора, образовавшийся раствор нагревают до -15oC, перемешивают 20 мин и перегоняют при пониженном давлении. Полученный остаток растворяют в 1 л этилацетата и полученный раствор четыре раза промывают 1 л насыщенного раствора хлорида натрия, сушат над безводным сульфатом магния и перегонкой при пониженном давлении получают 115,96 г заглавного соединения. ЯМР ( d CDCI3): 1,66 (д, 6Н), 5,41 (с, 1Н), 6,63 (д, 1Н), 6,84 (с, 1Н), 6,86 (д, 1Н), 6,97 (с, 1Н), 7,25 (д, IOH). Препаративный пример 2. Синтез 2-(2-трифенилметиламинотиазол-4-ил)-2-( a -дифенилметилоксикарбонил-3,4-0-изопропилидендиоксибензилоксиимино)уксусной кислоты
Стадия 1). Синтез аллилового эфира 2-(2-трифенилметиламинотиазол-4-ил)-2-( a -дифенилметилоксикарбонил-3,4-0-изопропилидендиоксибензилоксиимино)уксусной кислоты
К раствору 58,18 г 2-(2-трифенилметиламинотиазол-4-ил)-2-гидроксииминоуксусной кислоты аллилового эфира в 140 мл диметилформамида добавляют 61 г карбоната калия и 29,4 г иодида калия и полученный раствор охлаждают до 0oC. К раствору по каплям прибавляют раствор 80,16 г соединения, полученного в препаративном примере 1, в 60 мл диметилформамида в течение 1 ч и перемешивание продолжают еще 20 мин. Полученный раствор отгоняют при пониженном давлении с удалением растворителя. Полученный в результате остаток растворяют в 2 л этилацетата. Полученный раствор шесть раз промывают 400 мл насыщенного раствора хлорида натрия, сушат над безводным сульфатом магния и отгоняют при пониженном давлении с удалением растворителя. Очисткой полученного остатка колоночной хроматографией на силикагеле получают 89 г заглавного соединения. ЯМР ( d CDCI3): 1,69 (с, 6Н), 4,81 (д, 2Н), 5,27 (АВк, 2Н), 5,79 (с, 1Н), 5,8-5,99 (м, 1Н), 6,53 (с, 1Н), 6,64 (д, 1Н), 6,78 (д, 1Н), 6,87 (с, 1Н), 7,13-7,36 (м, 27Н). Стадия 2). Синтез (2-(2-трифенилметиламинотиазол-4-ил)-2-( a дифенилметилоксикарбонил-3,4-0-изопропилидендиоксибензилоксиимино)уксусной кислоты
К раствору 60 г в 500 мл хлористого метилена добавляют 14,5 г калиевой соли 2-этилгексановой кислоты, 3,75 г трифенилфосфина и 0,6 г терракис(трифенилфосфин)палладия и перемешивают 1 ч при комнатной температуре. Реакционную смесь трижды промывают 50 мл насыщенного раствора хлорида натрия, сушат над безводным сульфатом магния и при пониженном давлении отгонкой удаляют растворитель. Очисткой остатка колоночной хроматографией на силикагеле получают 50 г заглавного соединения. ЯМР ( d CDCI3): 1,7 (с, 6Н), 5,68 (с, 1Н), 6,55 (с, 1Н), 6,66 (д, 1Н), 6,8 (д, 1Н), 6,89 (с, 1Н), 7,04-7,27 (м, 27Н). Препаративный пример 3. Синтез п-бензилового эфира 3-хлорметил-7-/(Z)-2-( a дифенилметилоксикарбонил-3,4-0-изопропилидендиоксибензилоксиимино)-2-(2-трифенилметиламинотиазол-4-ил)-ацетамидо/-3-цефем-4-карбоновой кислоты. К суспензии 36 га п-метоксибензилового эфира 7-амино-3-хлорметил-3-цефем-4-карбоновой кислоты в 950 мл хлористого метилена добавляют 28,1 г пиридина. Образовавшийся раствор перемешивают и охлаждают до -20oC. Затем добавляют 50,09 г соединения, полученного в препаративном примере 1, и реакционную смесь перемешивают 5 мин. К реакционной смеси добавляют 13,62 г хлорокиси фосфора и перемешивают еще 30 мин. Реакционную смесь трижды промывают 400 мл насыщенным раствором хлорида натрия и сушат над безводным сульфатом магния. Из смеси отгонкой при пониженном давлении удаляют растворитель и очисткой колоночной хроматографией на силикагеле получают в виде твердой пены 70 г заглавного соединения. ЯМР ( d CDCI3): 1,59 (д, 6Н), 3,33 (АВк, 2Н), 3,83 (с,3Н), 4,51 (АВк, 2Н), 4,96 (д, 1Н), 6,27 (с, 2Н), 5,87 (дд, 1Н), 5,95 (с, 1Н), 6,6-7,45 (м, 35Н), 8,21 (д, 1Н). Пример 1. Синтез 7-/(Z)-2-(аминотиазол-4-ил)-2-( a -карбокси-3,4-дигидроксибензилоксиимино)ацетамидо/-3-(4,6-диаминопиримидин-2-ил)тиометил-3-цефем-4-карбоксилата (соединения 1-1S и 1-1R)
К раствору 5 г соединения, полученного в препаративном примере 3, в 20 мл диметилформамида добавляют 1,84 г 4,6-диаминопиримидин-2-тиола и смесь перемешивают 1 ч при комнатной температуре. Добавляют 200 мл дистиллированной воды и 200 мл этилацетата, встряхивают и органический слой отделяют. Органический слой трижды промывают 200 мл насыщенного раствора хлорида натрия, сушат над 50 г безводного сульфата магния и испарением при пониженном давлении удаляют растворитель. Полученный концентрат при перемешивании прибавляют по каплям к 300 мл диэтилового эфира с получением осадка, промыванием которого 200 мл диэтилового эфира и высушиванием получают 4,62 г белого порошка. Порошок растворяют в 15 мл анизола и полученный раствор охлаждают до 0-4oC. К раствору по каплям прибавляют 30 мл трифторуксусной кислоты, реакционную смесь перемешивают 1 ч при комнатной температуре и охлаждают до -(10-15)oC. К раствору по каплям прибавляют 180 мл диэтилового эфира, полученную смесь фильтруют, последовательно промывают 150 мл ацетона и 150 мл диэтилового эфира и после высушивания получают 2,25 г твердого вещества цвета слоновой кости. Продукт разделяют на стальной C18 колонке (19 мм x 30 см) с применением в качестве элюента 5% метанола и получением 460 мг 1-1S и 457 мг 1-1R заглавных соединений в виде белых порошков. МС (ББА, М + I): 690. ЯМР ( d D2O + NaHCO3):
1-1S. 3,29 (АВк, 2Н), 4,96 (д, 1Н), 5,37 (с, 1Н), 5,42 (с, 1Н), 5,62 (д, 1Н), 6,79-7,03 (м, 4Н). 1-1R. (3,31 (АВк, 2Н), 4,11 (АВк, 2Н), 4,94 (д, 1Н), 5,38 (с, 1Н), 5,41 (с, 1Н), 4,58 (д, 1Н), 6,8-7,03 (м, 4Н). ИК (KBr, см-1): 1770 ( b лактам), 1660, 1630, 1570. Пример 2. Синтез 7-/(Z)-2-(аминотиазол-4-ил)-2-( a карбокси-3,4-дигидроксибензилоксиимино)ацетамидо/-3-(4,6-диамино-5-метилпиримидин-2-ил)тиометил-3-цефем-4-карбоксилата(соединения 1-2S и 1-2R). Воспроизведена методика Примера 1, но использованием в качестве исходного соединения 4,6-диамино-5-метилпиримидин-2-)тиола (1,99 г). Получено 445 мг 1-2S и 443 мг 1-2R заглавных соединений. МС (ББА, М +I): 704. ЯМР (d D2 + NaHCO3):
1-2S. 1,83 (с, 3Н), 3,33 (АВк, 2Н), 4,11 (АВк, 2Н), 4,94 (д, 1Н), 5,39 (с, 1Н), 5,59 (д, 1Н), 6,8-7,03 (м, 4Н). 1-2R. 1,84 (с, 3Н), 3,32 (АВк, 2Н), 4,09 (АВк, 2Н), 4,95 (д, 1Н), 5,39 (с, 1Н), 5,62 (д, 1Н), 6,8-7,03 (м, 3Н). ИК (KBr, см-1): 1770 ( b - -лактам), 1665, 1630, 1580. Пример 3. Синтез 7-/(Z)-2-(аминотиазол-4-ил)-2-(

МС (ББА, М +I): 675. ЯМР (

1-3S. 3,3 (АВк, 2Н), 4,09 (АВк, 2Н), 4,98 (д, 1Н), 5,36 (с, 1Н), 5,62 (д, 1Н), 6,49 (д, 1Н), 6,81-7,02 (м, 4Н), 7,96 (д, 1Н). 1-3R. 3,31 (АВк, 2Н), 4,11 (АВк, 2Н), 4,96 (д, 1Н), 5,38 (с, 1Н), 5,63 (д, 1Н), 6,49 (д, 1Н), 6,82-7,01 (м, 4Н), 7,98 (д, IH). ИК (KBr, см-1): 1770 ( b - -лактам), 1670, 1630, 1570. Пример 4. Синтез 7-/(Z)-2-(аминотиазол-4-ил)-2-(


1-4S. 2,12 (м, 2Н), 2,68 (т, 2Н), 2,95 (т, 2Н), 3,4 (АВк, 2Н), 4,23 (АВк, 2Н), 4,96 (д, 1Н), 5,38 (с, 1Н), 5,54 (д, 1Н), 6,81-7,02 (м, 4Н). 1-4R. 2,11 (м, 2Н), 2,69 (т, 2Н), 2,95 (т, 2Н), 3,33 (АВк, 2Н), 4,22 (АВк, 2Н), 4,97 (д, 1Н), 5,38 (с, 1Н), 5,59 (д, 1Н), 6,8-7,02 (м, 4Н). ИК (KBr, см-1): 1770 ( b - лактам) 1665, 1635, 1580. Пример 5. Синтез 7-/(Z)-2-(аминотиазол-4-ил)-2-(


1-5S. 3,31 (АВк, 2Н), 4,07 (АВк, 2Н), 4,96 (д, 1Н), 5,4 (с, 1Н), 5,65 ( д, 1Н), 6,8-7,05 (м, 4Н). 1-5R. 3,32 (АВк, 2Н), 4.11 (АВк, 2Н), 4,95 (д, 1Н), 5,41 (с, 1Н), 5,63 (д, 1Н), 6,8-7,01 (м, 4Н). ИК (KBr, см-1): 1770 ( b - лактам), 1670, 1620, 1580. Пример 6. Синтез 7-/(Z)-2-(аминотиазол-4-ил)-2-(


1-6S. 3,3 (АВк, 2Н), 4,05 (АВк, 2Н), 4,98 (д, 1Н), 5,41 (с, 1Н), 5,65 (д, 1Н), 5,89 (с, 1Н), 6,79-7,02 (м, 4Н). 1-6R. 3,31 (АВк, 2Н), 4,1 (АВк, 2Н), 4,97 (д, 1Н), 5,39 (с, 1Н), 5,61 (д, 1Н), 5,89 (с, 1Н), 6,8-7,03 (м, 4Н). ИК (KBr, см-1): 1770 ( b - лактам), 1670, 1630, 1580. Пример 7. Синтез 7-/(Z)-2-(аминотиазол-4-ил)-2-(


1-7S. 3,33 (АВк, 2Н), 4,11 (АВк, 2Н), 4,94 (д, 1Н), 5,59 (д, 1Н), 5,89 (с, 1Н), 6,8-7,03 (м, 4Н), 8,19 (с, 1Н). 1-7R. 3,32 (АВк, 2Н), 4,09 (АВк, 2Н), 4,95 (д, 1Н), 5,62 (д, 1Н), 5,91 (с, 1Н), 6,8-7,03 (м, 4Н), 8,2 (с, 1Н). ИК (KBr, см-1): 1770 (b -лактам) 1650, 1630, 1580. Испытание активности. Для иллюстрации неожиданно очень высокой антибактериальной эффективности соединений настоящего изобретения определены минимальные ингибирующие концентрации (МИК) и фармакинетические параметры синтезированных соединений относительно стандартных штаммов и проведено сравнение с Цефтазидином, применяемым в качестве контрольного соединения. Значения МИК получены методом двукратного разбавления, т.е. путем двукратного последовательного разбавления каждого из испытуемых соединений, который вносят в среду агара Мюлера-Хинтона. Среду инокулируют 2 мкл стандартного испытуемого штамма в концентрации 107 КОЕ (колонию образующих единиц) на мл. Среду инкубируют 20 ч при 37oC. Результаты определения МИК приведены в табл.1. Фармакинетические параметры определяют на крысах линии SD ( ) с массой тела 230

Формула изобретения

где R1 водород или радикал для защиты аминогруппы;
R2 и R3 независимо друг от друга водород или радикал для защиты гидроксигруппы или совместно образуют циклическую защищающую диол группу;
R4 и R5 независимо друг от друга водород или радикал для защиты карбоксила;
X и Y соответственно азот и углерод или соответственно углерод и азот;
R6 и R7 независимо друг от друга водород, аминогруппа, C1 C4-алкил или R6 и R7 совместно с атомом углерода, к которому они присоединены, образуют C3 C7-циклоалкил, когда X и Y представляют соответственно азот и углерод, или R7 водород или аминогруппа, когда X и Y представляют соответственно атом углерода и азота;
QCH-,
и их фармакологически приемлемые нетоксичные соли, физиологически гидролизуемые сложные эфиры, син-изомеры и оптические изомеры. 2. Соединения по п.1, где R1, R4 и R5 водород, R2 и R3 независимо водород или ацетил, R6 водород или метил и R7 водород или аминогруппа или они образуют циклопентановый или циклогексановый цикл, X и Y соответственно азот и углерод. 3. Соединения по п.1, в которых все R1, R4 и R5 - водород, R2 и R3 независимо водород или ацетил, R7 - водород или аминогруппа, X и Y соответственно углерод и азот. 4. Соединения по п. 1, выбранные из группы, включающей 7-[(Z)-2-(аминотиазол-4-ил)-2-((R)-

















где

Q, R1 R5 имеют указанные значения,
подвергают взаимодействию с соединением общей формулы III

где R6 и R7 имеют указанные значения,
в присутствии растворителя и, в случае необходимости, проводят удаление радикалов, защищающих аминогруппу или карбоксильные группы.
РИСУНКИ
Рисунок 1, Рисунок 2, Рисунок 3