Теплофизический макет термоэмиссионного петлевого канала
Назначение: термоэмиссионный метод преобразования тепловой энергии в электрическую. Сущность изобретения: между двумя соседними калориметрами интегрального теплового потока, внутри которых находится топливно-эмиттерный узел электрогенерирующего элемента моделируемой термоэмиссионной сборки, размещена вставка, выполненная из двух тонких таблеток делящегося вещества, толщина которых может быть выбрана из соотношения
0,6
, где
- длина свободного пробега нейтронов в делящемся веществе таблеток. 1 з.п. ф-лы, 1 ил.
Изобретение относится к термоэмиссионному методу преобразования тепловой энергии и реакторной теплофизике и может быть использовано в программе реакторных испытаний термоэмиссионных электрогенерирующих сборок (ЭГС).
В практике реакторных теплофизических исследований ТВЭЛ и реакторных испытаний ЭГС получил широкое распространение эксперимент с использованием теплофизического макета (ТФМ) соответствующего испытательного устройства. Так например, применительно к реакторным испытаниям термоэмиссионных ЭГС реакторный эксперимент с ТФМ позволяет [1] определить абсолютное значение и пространственное распределение тепловыделения в топливных сердечниках ЭГС и "привязать" мощность ЭГС к тепловой мощности исследовательского ядерного реактора (ЯР); измерить реактивность, вносимую петлевым каналом (ПК), и соответственно найти допустимую длительность компании ЯР; измерить радиационное тепловыделение в конструкционных материалах ПК; сформировать требуемое распределение тепловыделения по высоте ЭГС, а в некоторых случаях и спектр нейтронов; провести ряд диагностических экспериментов. Основное требование к ТФМ, по существу являющемуся аналогом ПК с испытываемой ЭГС, идентичность используемых при изготовлении ТФМ материалов и геометрии с материалами и геометрией ПК и ЭГС. Наиболее близким к изобретению по технической сущности является ТФМ [2] который содержит корпус с размещенными в нем с зазором калориметрами, выполненными с возможностью размещения в каждом из них топливно-эмиттерного узла ЭГЭ моделируемой ЭГС, причем между двумя соседними калориметрами размещена вставка в виде топливного сердечника из делящегося вещества, диаметр которого равен диаметру топливного сердечника топливно-эмиттерного узла, при этом расстояние между торцами топливно-эмиттерного узла ЭГЭ, размещенного в ТФМ внутри калориметра, и топливного сердечника равно расстоянию между соседними ЭГЭ в моделируемой ЭГС. В таком ТФМ обеспечивается высокая точность определения тепловыделения вследствие полного соответствия материалов и геометрии в ТФМ и моделируемом ПК с ЭГС. Однако он требует изготовления дополнительного количества топливных сердечников, используемых в виде вставок между калориметрами. Это удорожает изготовление ТФМ. Техническим результатом, достигаемым при применении изобретения, является уменьшение количества делящегося вещества, используемого в ТФМ, и соответственно снижение стоимости изготовления ТФМ. Указанный технический результат достигается в ТФМ термоэмиссионного ПК, содержащем корпус с размещенными в нем калориметрами, выполненными с возможностью размещения в каждом из них топливно-эмиттерного узла ЭГЭ моделируемой ЭГС, причем в торцевых зазорах между двумя соседними калориметрами установлены вставки из делящегося вещества, диаметр которых равен диаметру топливного сердечника топливно-эмиттерного узла, а расстояние между торцом топливного сердечника топливно-эмиттерного узла и вставки выбрано равным расстоянию между топливными сердечниками соседних ЭГЭ в моделируемой ЭГС, в котором в качестве вставки из делящегося вещества применены две таблетки делящегося вещества, причем толщина таблетки может быть выбрана из условия:



Qi=Ki(Ti)Ei (3)
Зная Q и мощность реактора N, можно найти соотношение тепловой мощности каждого ЭГЭ и мощности реактора:
Ki=Qi/N (4)
которое затем и используется для определения тепловой мощности каждого ЭГЭ (и всей ЭГС) при петлевых испытаниях. Qэгэj=KiN (5)
Погрешность определения Qэгэ по (5) в основном будет определяться степенью соответствия геометрии и материалов ТФМ и ПК с ЭГС и условиями реакторного эксперимента с ТФМ и испытаний ПК с ЭГС. Благодаря тому что топливные таблетки 7 сделаны из делящегося вещества и их толщина выбрана по (1), обеспечивается практически одинаковое экранирование нейтронного потока при испытаниях ТФМ и при петлевых испытаниях ЭГС. Полная идентичность экранирования достигалась бы при условии


Формула изобретения



где
