Способ выпрямления переменного напряжения
Авторы патента:
Сущность: способ выпрямления переменного напряжения относится к электротехнике и электроэнергетике и может найти применение в сильноточных низковольтных выпрямителях переменного тока. Способ включает подачу переменного напряжения на термоэмиссионный преобразователь тепловой энергии в электрическую, при этом ток эмиссии катода и ток эмиссии анода выбирают из определенного соотношения. 4 ил.
Изобретение относится к электротехнике и электроэнергетике и может найти применение в сильноточных низковольтных выпрямителях переменного тока.
Известен способ выпрямления переменного напряжения путем подачи ее на преобразователь напряжения в виде полупроводникового диода (см. Г. Хениш. - Полупроводниковые выпрямители. - М.: Иностранная литература, 1951, с. 45). Недостатком этого способа выпрямления переменного напряжения является наличие прямого падения напряжения в полупроводниковом диоде при прохождении тока в пропускном направлении, что обусловлено энергозатратами на обеспечение проводимости в p-n переходе. Наиболее близким к заявляемому способу выпрямления переменного напряжения по числу общих существенных признаков является способ выпрямления, включающий подачу переменного напряжения на газоразрядный электрический вентиль с подогреваемым катодом и снятие с вентиля выпрямленного напряжения. Катод такого вентиля изготавливают из материала, имеющего работу выхода электрона по величине, меньшую работу выхода электрона из материала анода. С этой целью катод покрывают слоем щелочно-земельных окислов или используют тарированный катод (см. Вологдин В.П. - Выпрямители. - М.-Л.:ОНТИ НКТП СССР, 1936, с. 98-102). Недостатком известного способа выпрямления переменного напряжения-прототипа является возникновение прямого падения напряжения величиной dU при прохождении тока в пропускном направлении, вызванного энергозатратами на обеспечение проводимости между электродами вентиля. Это прямое падение напряжения составляет, например, для газотронов величину порядка 10-15 В, для полупроводниковых приборов: от 3 - 4 В для вентиля из карбида кремния до 0,5 - 1,0 В для германиевых вентилей. Оно уменьшает коэффициент полезного действия преобразования на величину примерно dU/U, где U - среднеквадратичное выпрямляемое напряжение. Задачей изобретения является создание такого способа выпрямления переменного напряжения, который бы обеспечил повышение коэффициента полезного действия при преобразовании переменного напряжения в постоянное. Указанная задача решается тем, что в способе выпрямления переменного напряжения, включающем подачу переменного напряжения на электрический вентиль с подогреваемым катодом и снятия с вентиля выпрямленного напряжения упомянутое напряжение подают на термоэмиссионный преобразователь тепловой энергии в электрическую (ТЭП) с катодом и анодом, выполненными из материалов с работами выхода электрода, удовлетворяющими соотношению: Eк > Eа, где Eк - работа выхода электрона материала поверхности катода, Дж; Eа - работа выхода электрона материала поверхности анода, Дж; при этом ток эмиссии анода IА и ток эмиссии катода Iк выбирают из соотношения: Ia < U0/Rн < Iк, где Iа= Sа







Sа - площадь эмиттирующей поверхности анода, м2;
Sк - площадь эмиттирующей поверхности катода, м2;
U0 - амплитудное значение выпрямляемого переменного напряжения, В;
RН - сопротивление нагрузки, Ом;
A - постоянная Ричардсона, А/К2, м2;
Tа - температура анода, K;
Tк - температура катода, K;
k - постоянная Больцмана, Дж/К. Термоэмиссионный преобразователь может быть как вакуумный, так и наполненный парами металлов, газами или их смесью, например наполненный парами цезия, или смесью паров цезия и бария. При таком выполнении способа выпрямления при подаче переменного напряжения на ТЭП за счет разности температур и контактной разности потенциалов между катодом и анодом происходит преобразование подводимой извне тепловой энергии в электрическую и одновременно осуществляется выпрямление переменного напряжения. При этом практически отсутствует прямое падение напряжения при прохождении тока в пропускном направлении, что приводит к увеличению коэффициента полезного действия выпрямления. Рассмотрим подробнее процессы, которые происходят в заявляемом способе. При подведении к катоду ТЭП тепловой энергии от внешнего источника и охлаждении анода эта энергия Qк будет затрачиваться (за вычетом потерь Qп на излучение, теплопроводность по выводам и т.д.) на испарение электронного газа:

При конденсации электронного газа на аноде выделяется тепловая энергия Qа:



Uн = Iн


где
w - угловая частота, 1/с;
t - время, с;
a - начальная фаза. На нагрузке Rн будет выделяться вся мощность, генерируемая как источником выпрямляемого напряжения, так и ТЭП. Выпрямление переменного напряжения будет происходить при нулевом прямом падении напряжения на ТЭП, когда Uн достигнет нуля, т.е. когда /U0





Uн = E0 + U0

а ток
Iн = Uн/Rн = E0/Rн + U0/Rн

При увеличении внешнего напряжения Uв в отрицательном направлении Uн достигнет нуля при /U0

Uн = Uобр = Iобр

В дальнейшем при возрастании Uв в положительном направлении Uн и Iн вновь станут равными нулю, когда /U0

























(0,5 + 0,25 - 0,57)


а эффективный КПД преобразования составит 99%, т.е. выпрямление осуществляется практически без потерь. Утилизация тепла, отводимого от охлаждаемых водой вентилей, в известных способах преобразования также может несколько поднять их КПД, однако из-за того, что это тепло выделяется за счет потерь электроэнергии даже при полной его утилизации будет использовано лишь 30% израсходованной на получение электроэнергии первоначальной тепловой энергии. Таким образом, эффективный КПД известного способа (для U = 6 В, dU = 1 В) увеличится с 83 всего лишь до 87,5%. Даже без использования отработанного тепла с анода эффективный КПД заявляемого способа будет выше, чем у известного способа. Для рассмотренного примера, когда к катоду подводится 9,1







Формула изобретения
Iа<U/Rн<I,
где
Ia= Sa


Iк= Sк


Sа - площадь эмиттирующей поверхности анода, м2;
Sк - площадь эмиттирующей поверхности катода, м2;
U0 - амплитудное значение выпрямляемого переменного напряжения, B;
Rн - сопротивление нагрузки, Ом;
A - постоянная Ричардсона, A/K2

Tа - температура поверхности анода, K;
Tк - температура поверхности катода, K;
Eа - работа выхода электрона материала анода, Дж;
Eк - работа выхода электрона материала катода, Дж;
k - постоянная Больцмана, Дж/К.
РИСУНКИ
Рисунок 1, Рисунок 2, Рисунок 3, Рисунок 4
Похожие патенты:
Изобретение относится к области газоразрядной техники, более конкретно к плазменным вентилям
Изобретение относится к технике преобразования электрической энергии переменного тока в энергию постоянного тока с помощью вентильных преобразователей, управление которыми (регулирование выпрямленного напряжения) осуществляется путем переключения ответвлений от обмоток трансформаторов
Многофазный выпрямительный агрегат // 2100896
Изобретение относится к силовой преобразовательной технике и может быть использовано в системах электроснабжения электролизных, электротермических и других установок, потребляющих энергию на постоянном токе
Изобретение относится к электротехнике и предназначено для питания от источника переменного тока потребителей, которым свойственен режим эксплуатационного короткого замыкания
Выпрямительная установка // 2007828
Изобретение относится к электротехнике и может быть использовано при построении разного рода устройств, требующих преобразования переменного напряжения в постоянное, в частности источников вторичного электропитания различного назначения
Изобретение относится к преобразовательной технике и может быть применено для питания различных потребителей постоянного тока
Изобретение относится к области газоразрядной техники, более конкретно к плазменным вентилям
Изобретение относится к термоэмиссионному методу преобразования тепловой энергии непосредственно в электрическую и может быть использовано при создании энергоустановок с термоэмиссионным реактором-преобразователем (ТРП) с расположенными внутри активной зоны термоэмиссионными электрогенерирующими сборками (ЭГС)
Многоэлементный электрогенерирующий канал // 2102813
Изобретение относится к области прямого преобразования тепловой энергии в электрическую, а более конкретно, к конструкции электрогенерирующего канала (ЭГК) термоэмиссионного реактора-преобразователя
Изобретение относится к области электроэнергетики, к ядерной космической энергетике
Способ определения тепловой мощности термоэмиссионной сборки при петлевых реакторных испытаниях // 2095882
Изобретение относится к термоэмиссионному методу преобразования тепловой энергии непосредственно в электрическую и может быть использовано при создании энергоустановок с термоэмиссионным реактором преобразователем (ТРП) с расположенными внутри активной зоны термоэмиссионными электрогенерирующими сборками (ЭГС)
Термоэмиссионная электрогенерирующая сборка // 2095881
Изобретение относится к способам управления ядерными реакторами, в частности, к управлению термоэмиссионным реактором-преобразователем (РП), используемым в качестве источников электрической энергии в ядерных энергетических установках (ЯЭУ) космических аппаратов (КА)
Изобретение относится к термоэмиссионному методу преобразования тепловой энергии в электрическую и может быть использовано при создании источников и генераторов пара цезия для термоэмиссионных преобразователей, преимущественно для реакторных испытательных устройств термоэмиссионных сборок
Изобретение относится к технике преобразования тепловой энергии в электрическую, а более конкретно - к прямому преобразованию тепла термоэмиссионным способом, и предназначено для использования в качестве источников электрической энергии в наземных и космических установках