Хемилюминесцентная композиция
Цель: разработка новой хемилюминесцентной композиции на основе бис [1-(1Н)-2-пиридонил] глиоксаля, которая обладала бы улучшенными светотехническими характеристиками (временем действия или большей освещенностью, создаваемой рецептурой). При этом преследовалась также задача удешевления композиции за счет использования более дешевых отечественных компонентов. Поставленная цель достигнута использованием в качестве кислотного активатора смеси кислот. В заявке приведена методика приготовления хемилюминесцентных композиций различных цветов, в том числе показана возможность получения источников света белого свечения люминофоров, перекрывающих максимумами флуоресценции весь видимый диапазон спектра. 10 табл.
Изобретение относится к органической химии, в частности к композициям для получения светового излучения в результате протекания хемилюминесцентной реакции.
Хемилюминесцентные композиции (ХЛК), как источник получения видимого света, известны достаточно давно и производятся в мировой промышленности. Источники света на основе ХЛК широко используются преимущественно как безопасный, надежный, не требующий источника электрической энергии излучатель, например, в качестве средства аварийного или бытового освещения или сигнализации. Промышленность производит ХЛК на основе наиболее эффективных в настоящее время по светоотдаче пероксидно-оксалатных систем, в частности на основе бис/2,4,5-трихлор-6-карбопентоксифенил/оксалата или других аналогичных хлорсодержащих ароматических веществ. Дальнейшее промышленное производство таких ХЛК сталкивается с непреодолимыми трудностями, так как возрастающие требования защитников окружающей среды приводят к запрету использования подобных хлорсодержащих ароматических веществ по причине опасности заражения природы мощными экотоксикантами, например 2,3,7,8-тетрахлордибензо-п-диоксином или его аналогами. Возрастающие экологические и иные комплексные требования к конкурентоспособности ХЛК заставили исследователей обратиться к ХЛК на основе производных глиоксаля, например бис/1-(1Н)-2-пиридонил/глиоксаля. Это вещество способно под действием окислителей вызывать сенсибилизированную хемилюминесцентную реакцию с несколько меньшим квантовым выходом, чем хлорсодержащие производные щавелевой кислоты, но в противовес последним не способно генерировать в ХЛК экотоксиканты и может быть использовано для создания экологически безопасных химических источников света. Хотя ХЛК на основе бис/1-(1Н)-2-пиридонил/глиоксаля известны из источников научно-технической информации уже более двадцати пяти лет [1 6] специалистам они доступны преимущественно в лабораториях и опытных образцах, так как пригодные для массового производства технологичные, конкурентоспособные ХЛК должны отвечать комплексу жестких разносторонних требований. Данные о составе, световых и энергетических характеристиках, известных из литературных источников хемилюминесцентных композиций на основе бис/1-(1Н)-2-пиридонил/глиоксаля приведены в табл. 1 с указанием ссылки на источник. Необходимо отметить, что в табл. 1 включены данные с наиболее эффективных ХЛК из описанных в литературных источниках. Кроме того, для возможности сравнения и оценки ХЛК, представленных в табл. 1, была вычислена их удельная световая энергия Qуд., как общая характеристика композиции, работающей в качестве источника света. Величину Qуд. вычисляли в соответствии с законом Эйнштейна:







Сильная кислота 1,0

слабая кислота 0,3 5,0
Растворитель трет-бутиловый спирт 0,045 1,275
Растворитель диметилфталат Остальное
Промышленный вариант хемилюминесцентной композиции представляет собой состав, в котором компоненты до приведения композиции в рабочее состояние с целью получения света находятся в двух, предпочтительно в трех изолированных друг от друга емкостях, которые в нужный момент разрушаются с целью совмещения и смешения компонентов композиции для приведения ХЛК в рабочее состояние с целью получения света. Реализуется композиция чаще всего в следующем варианте. Бис/1-(1Н)-2-пиридонил/глиоксаль в виде раствора, суспензии, пасты или порошка и источник перекиси водорода запаиваются в двух отдельных стеклянных ампулах, которые размещены последовательно (цугом), параллельно (рядом) или коаксиально (одна ампула внутри другой) в пластмассовом, например, полиэтиленовом, контейнере в форме цилиндра, плоской коробочки, полушария и т.д. в котором располагается кислотный активатор, люминофор и часть или весь растворитель. Возможен вариант двух изолированных друг от друга емкостей (ампул). В этом случае часть компонентов, предпочтительно твердофазных, помещают в стеклянную ампулу с целью повышения сроков возможного хранения композиции, твердофазные компоненты могут разделяться слоями амфотерного стабилизирующего вещества, например a-окиси алюминия. Таким образом, возможны одноампульный и двухампульный варианты, ампулы располагаются в большей емкости пластиковом контейнере, в нем же ампулы раздавливаются без нарушения целостности пластикового контейнера (корпуса). Идеальной моделью промышленного химического источника света является изделие, содержащее в прозрачном корпусе только запаянные стеклянные ампулы. Срок хранения такого изделия является максимально возможным. В качестве источника перекиси водорода (окислителя) может быть использован раствор перекиси водорода в воде, диметилфталате или смеси диметилфталата с трет-бутанолом в так называемой сольватирующей пропорции, а также комплексы перекиси водорода с мочевиной, ацетамидом, уретаном и др. В качестве люминофора могут быть использованы предпочтительно 1-хлор-9,10-бис(фенилэтинил)антрацен или 1,4-диметил-9,10-бис(фенилэтинил)антрацен, а также 9,10-бис(хлорметил)антрацен; 9,10-бис(параметилфенил)антрацен; 9,10-бис(фенилэтинил)антрацен, а также другие ароматические соединения, способные участвовать и влиять на процесс сенсибилизированной хемилюминесценции. В качестве кислотного активатора используется смесь кислот, для которых логарифмы констант ионизации в воде первой кислоты отличается от логарифма константы ионизации в воде второй кислоты более, чем на величину 0,5. Возможно использование фенолкислот, сульфокислот, ароматических, карбоновых, минеральных кислот. Растворителем в хемилюминесцентной композиции является с-диметилфталат. В частности, применяемые в ХЛК смеси люминофоров, имеющих максимумы флуоресценции в разных областях спектра видимого излучения, дает возможность производства химических источников света желаемого цвета, например белого цвета. Для достижения этой цели необходимо дополнительно использовать добавки в качестве люминофоров и красителей таких соединений, как родамин с, бутиловый эфир родамина с, тетрахлор-9,10-бис(фенилэтинил)антрацена, дневные флуоресцентные пигменты оранжево-красной области спектра видимого излучения. Предлагаемую хемилюминесцентную композицию приготавливают по следующей методике. 1. В отдельной емкости приготавливают раствор двух кислот и люминофора в диметилфталате. При полном растворении компонентов получают раствор кислотного активатора. 2. В отдельной емкости приготавливают раствор из 10% перекиси водорода; 76,5% диметилфталата и 13,5% третично-бутилового спирта. 3. В отдельной колбе (емкости) приготавливают раствор или суспензию, или пасту, или твердый порошок БПГ, смешивают с дополнительным количеством люминофора. В емкости по п. 3 быстро смешивают все три компонента и производят необходимые замеры. Состав предлагаемой хемилюминесцентной композиции приведен в табл. 3. Светотехнические характеристики предлагаемой хемилюминесцентной композиции по сравнению с ХЛК-прототипом приведены в табл. 4. Таким образом, предлагаемая ХЛК обеспечивает создание промышленного варианта ХЛК для снаряжения химических источников света с более высокими значениями удельной световой энергии, максимальной яркостью и максимальной освещенностью в сопоставимых условиях измерения. Пример 1. Светотехнические измерения проводились на установке, в состав которой входили: световая скамья (ГОСТ 17616-82), в которую встроен датчик фотометра-радиометра "Кварц-01" с диапазоном измерений 10-2






Пример 11. В условиях примера 1, но при повышении концентрации БПГ на 50% яркость ХЛК возрастает на 20 23% При использовании ХЛК в промышленных источниках света экономически нецелесообразно увеличивать яркость источника за счет увеличения концентрации БПГ. Пример 12. В условиях примера 1, но при увеличении концентрации люминофора на 100% изменение светотехнических характеристик незначительно. Найденная концентрация люминофора для данной системы является оптимальной. Пример 13. В условиях примера 1, но при снижении концентрации до 50% люминофора происходит увеличение яркости ХЛК не более, чем на 10% но при этом время свечения композиции сокращается на 22%
Пример 14. В условиях примера 1, но при увеличении концентрации перекиси водорода на 100% происходит снижение яркости ХЛК и уменьшение времени свечения. Пример 15. В условиях примера 1, но при уменьшении концентрации перекиси водорода на 50% происходит снижение яркости ХЛК и времени свечения. Пример 16. В условиях примера 1, но при использовании в качестве активатора смеси двух кислот с разницей DpKк<0,5 (строка 11 в табл. 7) временные и светотехнические характеристики очень низкие. Таким образом, авторами разработана новая хемилюминесцентная композиция для промышленных химических источников света на основе бис/1-(1Н)-2-пиридонил/глиоксаля с использованием неожиданно обнаруженного эффекта применения смеси кислот в качестве активатора светоизлучения. Композиция, как указано в тексте, превосходит прототип по светотехническим параметрам и по времени свечения. Кроме того, кислоты, применяемые для активатора, являются широко применяемые в практике реагентами. Предлагаемая ХЛК не содержит в своем составе веществ 1 класса опасности по ГОСТ 12.1.007-88 и разрешена Минздравом РФ к применению в химических источниках света.
Формула изобретения
Бис[2-(1Н)-2-пиридонил]глиоксаль 0,03 0,70
Перекись водорода 98%-ная 0,03 0,85
Люминофор 1,25


Сильная кислота 1,0

Слабая кислота 0,3 5,0
Трет-бутанол 0,045 1,275
Диметилфталат Остальное
РИСУНКИ
Рисунок 1, Рисунок 2, Рисунок 3, Рисунок 4, Рисунок 5, Рисунок 6, Рисунок 7, Рисунок 8, Рисунок 9, Рисунок 10, Рисунок 11, Рисунок 12, Рисунок 13, Рисунок 14