Способ определения максимальной температуры окисного топлива в сердечнике вентилируемого твэла термоэмиссионного элемента
Использование: атомная энергетика. Сущность изобретения: при испытаниях электрогенерирующего канала в реакторе измеряют тепловыделение (Q) в твэле и тепловыделение (q) конденсата топлива, вышедшего из твэла, в зависимости от времени, определяют по этим зависимостям для интересующего момента времени скорости изменения dQ/d
и dq/d
, измеряют давление P парогазовой смеси в межэлектродном зазоре ЭГЭ, а оценку максимальной температуры топлива в сердечнике твэла проводят по выражению
Mо - начальная масса топлива в твэле; R - суммарное сопротивление газоотводного устройства; A и B - коэффициенты, зависящие от вида топливного материала; P - давление парогазовой смеси. 2 ил.
Изобретение относится к атомной энергетике, к созданию и наземной обработке твэлов, в частности электрогенерирующих элементов (ЭГЭ) термоэмиссионных электрогенерирующих каналов (ЭГК).
Главным этапом разработки вентилируемых твэлов являются петлевые испытания в исследовательских реакторах, где изучаются все специфические проблемы, связанные с созданием длительно работающих ЭГК. Одной из важнейших характеристик твэлов при испытаниях в исследовательском реакторе является максимальная температура (Т) топливного материала (ТМ), во многом определяющая работоспособность, стабильность и воспроизводимость характеристик ЭГК, свеллинговые процессы в твэлах и т.д. Известны косвенные методы определения Т, например, пользуясь значениями температуры на оболочке ЭГЭ и тепловыделения в твэле, можно рассчитать температурные поля в топливном сердечнике ЭГЭ [1] Наиболее близким к изобретению по технической сущности является способ определения максимальной температуры ТМ, описанный в [2] Он включает измерение тепловыделения qv и TЕ и оценки Т при известных





Mo начальная масса топлива в твэле [г]
R суммарное сопротивление газоотводного устройства [1/мм]
A и B коэффициенты, зависящие от вида топливного материала, для UO2 A 1,68


P давление парогазовой смеси [Па]

На фиг. 1 представлен общий вид ЭГЭ, в котором может быть реализован данный способ определения максимальной температуры ТМ в сердечнике вентилируемого твэла, а на фиг. 2 график, поясняющий суть способа. На фиг. 1 обозначено 1 конденсат топлива, вышедшего из твэла, 2 - система вентиляции, 3 топливо, 4 эмиттерная оболочка, 5 коллектор ЭГЭ, 6 коллекторная изоляция, 7 чехловая труба ЭГК, 8 датчик тепловой мощности в твэле, 9 датчик тепловой мощности, выделяемой в конденсате топлива, 10 - изоляция, 11 жиклер. На фиг. 2 обозначено: NA характерная кривая вывода реактора на мощность; Q кривая изменения тепловой мощности в твэле; q кривая изменения тепловой мощности, выделяемой в конденсате топлива. Твэл (см. фиг. 1) содержит оболочку 4, заключающую ТМ 3, и систему вентиляции, выполненную в виде трубки 2 с капиллярным наконечником (жиклером) 11. Способ реализуется следующим образом. ЭКГ, представляющий собой последовательно соединенную сборку ЭГЭ, с системами регистрации 8, 9 тепловой мощности, выделяемой в твэле и конденсате ТМ 1, вышедшего из твэла, помещают в ячейку реактора. В процессе вывода реактора на мощность NA (фиг. 2) и затем в процессе работы реактора измеряют давление P парогазовой смеси в межэлектродном зазоре ЭГЭ, например, с помощью датчика давления. Измеряют изменение во времени тепловой мощности, выделяемой в твэле Q(








где w средняя скорость теплового движения молекул ТМ;
L средняя длина свободного пробега молекул ТМ в парогазовой смеси;
no концентрация пара ТМ в сердечнике ЭГЭ;
mтм масса молекулы ТМ;
R сопротивление газоотводного устройства.

где l1 и r1 длина и радиус отдельных участков газоотводного устройства соответственно. Выражение для no можно получить из зависимости для стехиометричной UO2 для равновесия между паровой и адсорбированной фазой [5]
lg P [мм рт.ст. 32258/Т + 12,183. (4)
Поток молекул ТМ (m) через систему вентиляции твэла можно определить также из соотношения
m =



где v объем конденсата топлива, вышедшего из ЭГЭ. Тепловыделение конденсата топлива определим из соотношения
q v

qv Q/V q/v (q + Q)/Vo, (7)
Vo и V начальный объем ТМ в твэле и текущее значение объема ТМ в твэле соответственно. Продифференцировав (6) и используя (7), получим выражение для dv/d


Используя известные выражения для L и w из [6] и no из формулы (4), по соотношениям (3) и (8) получим выражение (2) для Т. В качестве примера рассмотрим использование способа определения Т для типичного ЭГЭ, где в качестве ТМ используется двуокись урана (UO2). Основное сопротивление газоотводного устройства 2 (фиг. 1) оказывает жиклер 11, сопротивление которого R l/r2. Здесь l длина жиклера, r радиус жиклера. Для типичного ЭГЭ примем R 1600 1/мм. Давление парогазовой смеси, регистрируемое в межэлектродном зазоре ЭГЭ (обычно 130-1500 Па), примем P 1330 Па. Из анализа имеющихся экспериментальных данных по испытаниям энергонапряженных ЭГК примем для типичных режимов испытаний для момента времени




Можно решать уравнение (2) и графически с помощью обратной функции. Выражение (2) преобразуем к виду

где m определяется выражением (8). Построим зависимость m f(Т) для заданного R и P по выражению (9). Определив m по выражению (8), из графической зависимости m f(T) находим Т. Литература
1. Корнилов В.А. и др. Метод расчета температурных полей гетерогенного топливного сердечника термоэмиссионного электрогенерирующего элемента. Атомная энергия, 1980, т.49, вып.6, с.393-394. 2. Займовский А.С. и др. Тепловыделяющие элементы атомных реакторов, М. Атомиздат, 1966г, с.504. 3. Синявский В.В. Особенности определения температуры эмиттера при испытаниях термоэмиссионных преобразователей. ТВТ, т. 12, N6, с.1267-1271, 1974. 4. Колядин В.И. и др. Теплопроводность двуокиси урана. Атомная энергия, т.36, вып.1, 1974г, с.59-60. 5. Горбань Ю.А. и др. Исследование испарения двуокиси и карбидов урана. Атомная энергия, 1967, т.22, вып.6, с.465-467. 6. С. Дэшман. Научные основы вакуумной техники. Мир, М. 1964, с.68 и с. 84. 7. Г. Корн и Т.Корн. Справочник по математике для научных работников и инженеров. Издание второе, Москва, 1970, с.572.
Формула изобретения




где М0 начальная масса топлива в ТВЭЛе, г;
R суммарное сопротивление газоотводного устройства, мм-1;
A и B коэффициенты, зависящие от вида топливного материала, для UO2 A 1,68


Р давление парогазовой смеси, Па.
РИСУНКИ
Рисунок 1, Рисунок 2