Способ определения коэффициента теплопроводности оксидного топливного материала для вентилируемого твэла
Использование: атомная энергетика. Сущность изобретения: в процессе испытаний вентилируемого твэла в реакторе определяют скорость выноса топливного материала (ТМ) из твэла через систему вентиляции, измеряют тепловыделение в конденсате ТМ, вышедшего из твэла, и давление парогазовой смеси в системе вентиляции, производят выдержку при постоянной тепловой мощности в течение заданного отрезка времени, определяют изменение массы ТМ в твэле, оценивают максимальную температуру (Тo) топлива, а оценку коэффициента теплопроводности ТМ в твэле производят по уравнению где qv - плотность тепловыделения в ТМ; Тe - температура оболочки твэла; rc - радиус топливного сердечника;
r - относительное объемное содержание ТМ в твэле. 1 ил.
Изобретение относится к атомной энергетике, к созданию и наземной отработке высокотемпературных твэлов, в том числе термоэмиссионных.
Одним из основных этапов разработки твэлов с системой вывода летучих и газообразных продуктов деления (ГПД) через вентилируемое устройство, выполненное, например, в виде газоотводной трубки, являются петлевые испытания в исследовательских реакторах, где изучаются все специфические проблемы, связанные с созданием длительно работающих тепловых и электрогенерирующих сборок. Контролирование фундаментальной характеристики-теплопроводности топливного материала (ТМ) твэла во многом определяет достоверность получаемых экспериментальных результатов. В основе большинства методов измерения теплопроводности лежит определение количества теплоты, прошедшей через измеряемый образец. Наиболее простым методом определения теплопроводности следует считать сравнительный метод. Он относится к стационарным методам и заключается в том, что количество теплоты, прошедшее через исследуемый образец, определяется из известных параметров эталонного образца, находящегося в идеальном контакте с исследуемым образцом [1] Наиболее близким к изобретению по технической сущности является способ определения теплопроводности оксидного топлива, описанный в [2] Способ включает размещение таблеток из UO2 или твэла из UO2 в специальном измерительном устройстве, реакторные испытания устройства с измерением плотности объемного тепловыделения в ТМ, измерение температуры наружной поверхности твэла и оценку теплопроводности диоксида урана. Теплопроводность ТМ относится к структурно чувствительным свойствам, зависящим от ряда факторов: температуры, плотности, стехиометрического состава, технологии изготовления и т.д. Поэтому определение теплопроводности UO2 в исходном, например, спеченном, состоянии может существенно отличаться от ее значения в рабочем состоянии, так как в высокотемпературных твэлах, каким является и термоэмиссионный твэл, в начале работы происходит переконденсация топлива, с перестройкой структуры топлива, изменением плотности, стехиометрии и другими эффектами, существенно влияющими на теплопроводность. Техническим результатом, получаемым при использовании изобретения, является повышение точности определения теплопроводности ТМ, поскольку результат не зависит от исходного и рабочего состояния ТМ. Указанный технический результат достигается способом определения коэффициента теплопроводности (






где


R суммарное сопротивление системы вентиляции [1/м]
А и В коэффициенты, зависящие от вида ТМ (для UO2 A=1,68


rc радиус топливного сердечника [м]


На чертеже представлен общий вид термоэмиссионного электрогенерирующего элемента (ЭГЭ), в котором может быть реализован данный способ определения коэффициента теплопроводности ТМ. На чертеже обозначено: 1 конденсат ТМ, вышедшего из твэла; 2 система вентиляции; 3 ТМ; 4 оболочка твэла (эмиттерная оболочка ЭГЭ); 5 - коллектор ЭГЭ; 6 коллекторная изоляция; 7 чехловая труба ЭГК; 8 датчик тепловой мощности, выделяемой в твэле; 9 датчик тепловой мощности, выделяемой в конденсате ТМ вне твэла; 10 изоляция; 11 жиклер. Способ реализуется следующим образом. ЭГК, представляющий последовательно соединенную сборку ЭГЭ с системами регистрации 8 и 9 тепловой мощности, выделяемой в ТМ 3 твэла и вышедшем конденсате 1, помещают в ячейку реактора. В процессе работы реактора регистрируют по показаниям датчика 8 тепловыделение Q в ТМ 3 твэла и по показанию датчика 9 тепловыделения q в конденсате 1. Определяют изменение во времени тепловыделения в конденсате 1 (dq/d


где Мo первоначальная масса ТМ 3 в твэле. Плотность тепловыделения в ТМ (qv определяем, замеряя тепловыделения Q и q по показаниям датчиков 8 и 9, по соотношению

После вывода реактора на мощность, при которой планируется измерение коэффициента теплопроводности ТМ, производят выдержку в течение времени









где





где W средняя скорость теплового движения молекул ТМ;
L средняя длина свободного пробега молекул ТМ в парогазовой смеси;
no концентрация пара ТМ в сердечнике ЭГЭ;
mтм масса молекулы ТМ;
R сопротивление газоотводного устройства. R =

где li и ri длина и радиус отдельных участков газоотводного устройства соответственно. Выражение для no в зависимости от Тo можно получить из выражения равновесия между паровой и адсорбированной фазой стехиометричного UO2 [5]
lgP [мм рт.ст. -32258/Т + 12,183. (8)
Используя известные выражения для L и W из [6] и no из формулы (8), из (6) получаем выражения (2) для максимальной температуры ТМ в твэле (Тo). Уравнение для коэффициента теплопроводности ТМ в твэле (3) получаем, используя формулу для расчета температурных полей полого цилиндра с источниками тепла, охлаждаемого с наружной поверхности (7). В уравнении (3) использовано выражение для Тo из (2) и соотношение
1-

где ro внутренний радиус полого топливного цилиндра (см. чертеж). В качестве примера рассмотрим использование способа определения














Принимаем, в соответствии с неравенством (1), время выдержки











Формула изобретения


определяют изменение массы топливного материала


а оценку коэффициента теплопроводности


где


R суммарное сопротивление системы вентиляции, 1/м;
A и B коэффициенты, зависящие от вида топливного материала (для VO2 A 1,68


rс радиус топливного сердечника, м;
er относительное объемное содержание топливного материала в твэле:




РИСУНКИ
Рисунок 1