Способ получения поликристаллического селенида цинка
Изобретение относится к силовой ИК-оптике, получению пассивных элементов мощных CO2 -лазеров. Сущность изобретения: на подложки из стеклоуглерода, нагретые до 650-750°С, осаждают промежуточный слой селенида цинка в течение 5 ч при концентрации исходных реагентов 40-50 моль/м3 а основной слой при концентрации 20-26 моль/м3. 1 табл.
Изобретение относится к силовой ИК-оптике и касается разработки способа получения селенида цинка, используемого в качестве пассивных элементов высокомощных СО2-лазеров и других приборов, работающих с мощным ИК-излучением.
Известен способ получения поликристаллического селенида цинка химическим осаждением из паровой фазы путем подачи паров цинка в потоке аргона и селеноводорода, включающий нанесение промежуточного слоя, состоящего из графитового порошка, на графитовую подложку, нагретую до 700оС, при общем давлении в реакционной зоне 13,3 кПа с последующим осаждением основного слоя селенида цинка [1] По данным лазерной калориметрии на рабочей волне СО2 лазера (10,6 мкм) коэффициент общего оптического поглощения колеблется по геометрии образца от 0,8 до 5 м-1. Лазерную стойкость определяли прямым разрушением образцов в импульсном режиме работы одномодового СО2-лазера (длина импульса 200 нс, диаметр пучка 0,9 мм). Лазерная стойкость составляет 100 кДж/м2. Неоднородность оптического поглощения по геометрии образца и низкая лазерная стойкость обусловлены главным образом неконтролируемыми включениями частиц графитового порошка в основной слой селенида цинка. Наиболее близким к предлагаемому является способ получения поликристаллического селенида цинка химическим осаждением из паровой фазы путем подачи паров цинка в потоке аргона и селеноводорода, включающий нанесение промежуточного слоя тонкодисперсного порошка селенида цинка на графитовую подложку, нагретую до 850оС, при общем давлении в реакционной зоне 6,7 кПа с последующим осаждением основного слоя селенида цинка [2] Коэффициент общего оптического поглощения на рабочей волне СО2-лазера колеблется по геометрии образца от 0,8 до 5 м-1. Лазерная стойкость составляет 12 кДж/м2. В этом случае неоднородность оптического поглощения и низкая лазерная стойкость обусловлены прорастанием пор с шероховатой поверхности порошкообразного селенида цинка в объем поликристаллического селенида цинка. Недостатками способов получения селенида цинка [1, 2] являются непостоянное значение коэффициента оптического поглощения, меняющееся от точки к точке по геометрии образца, и низкая лазерная стойкость, что ограничивает, а порой исключает область его практического применения в качестве пассивных элементов высокомощных СО2-лазеров. Для снижения общего оптического поглощения и повышения лазерной стойкости в известном способе получения поликристаллического селенида цинка, включающем нанесение промежуточного слоя селенида цинка химическим осаждением из паровой фазы путем подачи паров цинка в потоке аргона и селеноводорода к нагретым подложкам с последующим осаждением основного слоя поликристаллического селенида цинка, промежуточный слой выполнен из поликристаллического селенида цинка, который наносят на подложки из стеклоуглерода, нагретые до 650-750оС, при общем давлении в реакционной зоне 0,5-1,3 кПа, время осаждения не менее 5 ч при концентрации исходных реагентов 40-50 моль/м3, а осаждение основного слоя селенида цинка ведут при концентрации 20-26 моль/м3. По предлагаемому способу получают массивные (105х800 мм) поликристаллические слои селенида цинка с лазерной стойкостью 200-220 кДж/м2 (20-22 Дж/см2), коэффициентом общего оптического поглощения на рабочей волне СО2-лазера (10,6 мкм) 1





Формула изобретения
СПОСОБ ПОЛУЧЕНИЯ ПОЛИКРИСТАЛЛИЧЕСКОГО СЕЛЕНИДА ЦИНКА химическим осаждением из паровой фазы путем подачи паров цинка в потоке аргона и селеноводорода в реакционную зону к нагретым подложкам, включающий нанесение промежуточного и основного поликристаллического слоев селенида цинка, отличающийся тем, что подложки используют из стеклоуглерода, нагрев их ведут до 650-750oС, общее давление в реакционной зоне поддерживают 0,5-1,3 кПа, промежуточный слой выполняют из селенида цикла осаждением в течение не менее 5 ч при концентрации исходных реагентов 40-50 моль/м3, а основной слой при концентрации 20-26 моль/м3.РИСУНКИ
Рисунок 1, Рисунок 2
Похожие патенты:
Изобретение относится к производству материалов электронной техники и квантовой электроники, использующихся для изготовления экранов лазерных электронно лучевых трубок
Изобретение относится к производству материалов электронной техники и квантовой электроники, использующихся для изготовления экранов лазерных электронно лучевых трубок
Изобретение относится к производству поликристаллических слоев соединений A2B6
Изобретение относится к области силовой ИК-оптики и касается способа получения поликристаллического селенида цинка, используемого в качестве пассивных элементов CO2-лазеров и других приборов, работающих в ИК-диапазоне
Изобретение относится к силовой МК-оптике для получения пассивных элементов CO2-лазеров и других приборов, работающих в ИК-диапазоне
Изобретение относится к области технологии материалов для оптоэлектроники и лазерной техники, а именно к способам получения поликристаллических блоков селенида цинка
Способ получения кристаллов теллурида кадмия // 1818364
Способ синтеза алмазов // 2046842
Изобретение относится к производству синтетических алмазов и может быть использовано в машиностроения
Изобретение относится к области силовой ИК-оптики и касается способа получения поликристаллического селенида цинка, используемого в качестве пассивных элементов CO2-лазеров и других приборов, работающих в ИК-диапазоне
Изобретение относится к полупроводниковой технологии и может быть использовано при изготовлении эпитаксиальных структур различного назначения методом пиролитического синтеза
Изобретение относится к полупроводниковой технологии и может найти применение при создании приборов оптоэлектроники и нелинейной оптики, в частности для полупроводниковых лазеров и преобразователей частоты
Изобретение относится к области полупроводниковой технологии, в частности к области выращивания эпитаксиальных слоев карбида кремния, и может быть, использовано в высокотемпературной электронике, в том числе для создания высокотемпературных интегральных схем
Изобретение относится к полупроводниковой технологии и может быть использовано при получении эпитаксиальных структур GAAS путем осаждения из газовой фазы
Изобретение относится к способам выращивания эпитаксиальных слоев из газовой фазы и может быть использовано в электронной промышленности при создании светоизлучающих приборов на основе нитрида галлия, работающих во всей видимой области спектра
Изобретение относится к технологии получения полупроводниковых материалов, предназначено для получения нитевидных кристаллов (НК) с воспроизводимыми геометрическими параметрами