Способ получения поликристаллического селенида цинка и устройство для его осуществления
Изобретение относится к силовой МК-оптике для получения пассивных элементов CO2-лазеров и других приборов, работающих в ИК-диапазоне. Поликристаллический селенид цинка получают осаждением из газовой фазы при раздельной подаче потоков смеси паров цинка с аргоном и смеси селеноводорода с аргоном, каждый из которых имеет вокруг себя защитный поток инертного газа. Потоки селеноводорода и цинка делят на n и 2 n частей, устанавливают соотношение указанных потоков смесей равным 1,5 - 1,8, а суммарный поток газовой смеси 690-750 см3/миндм2. . Осаждение ведут на стенках реактора квадратного сечения, имеющего входной фланец, по периметру квадрата со стороной 2 l/3 2n отверстий для подачи смеси паров цинка с аргоном и по периметру квадрата со стороной l/3 - n отверстий для подачи смеси селеноводорода с аргоном, где l - длина стороны квадрата фланца. Центры симметрии квадратов, по периметру которых расположены отверстия, совмещены с центром симметрии фланца. Вокруг каждого из отверстий по концентрическим окружностям расположены отверстия для подачи защитного газа. Изобретение обеспечивает увеличение полезного выхода селенида цинка. 2 с.п. ф-лы, 2 ил., 2 табл.
Изобретение относится к силовой ИК-оптике и касается разработки способа и устройства для получения равномерных поликристаллических слоев селенида цинка, используемого в качестве пассивных элементов СО2-лазеров и других приборов, работающих в ИК-диапазоне.
Известно устройство для осаждения селенида цинка, в котором рост поликристаллических слоев проводится в проточном реакторе [1]. В [1] исходные реагенты подавались в реактор по концентрическим кольцевым щелям. В способе [2] была разработана математическая модель процесса осаждения в реакторе квадратного сечения при условии осесимметричной подачи исходных реагентов. С учетом полученных в [2] уравнений, а также проведенных в [3] исследований механизма процесса осаждения ZnSe, можно рассчитать соотношение Wmin/Wmax для поперечного сечения пластин (Wmin(max) - толщина пластин в минимальной (максимальной) точке). При используемых в данном способе условиях роста Wmin/Wmax = 0,3-0,4, что приводит при изготовлении плоскопараллельных оптических заготовок к большим потерям материала: полезный выход оптических заготовок по селеноводороду не превышает 35-40%. Наиболее близким по технической сущности и достигаемому эффекту является способ получения поликристаллического селенида цинка химическим осаждением из газовой фазы, включающий раздельную подачу смесей паров цинка с аргоном и селеноводорода с аргоном [4]. При этом 50-60% селенида цинка осаждалось на входном фланце, уменьшая полезный выход селенида цинка до 20-25%. Целью изобретения является повышение полезного выхода оптических заготовок селенида цинка за счет увеличения однородности получаемых пластин по толщине, а также за счет снижения выноса исходных газообразных реагентов из зоны осаждения. Цель достигается тем, что в известном способе получения поликристаллического ZnSe осаждением из газовой фазы, содержащей пары цинка и селеноводорода в атмосфере аргона, потоки селеноводорода с аргоном и цинка с аргоном делят, соответственно, на n и 2n частей и устанавливают следующие соотношения потоков: смеси паров цинка с аргоном и селеноводорода с аргоном 1,5-1,8, защитного потока аргона и смеси селеноводорода с аргоном 9-12 при суммарном потоке газовой смеси, равном 690-750 см3/мин дм2. На фиг. 1 приведена схема устройства, реализующего предлагаемый способ; на фиг. 2 - схема расположения отверстий на входном фланце. Устройство состоит из вертикальной кварцевой трубы 1, в которую помещены резервуар 2 с цинком и реактор 3, представляющий собой трубу квадратного сечения, стенки которого являются подложками длиной 30-40 см. Рабочее давление в трубе создается форвакуумным насосом 4 и регулирующим вентилем 5. Необходимая температура в зоне расплава цинка и в зоне реактора создается внешним нагревателем 6. С целью равномерной подачи в реактор паров цинка и селеноводорода реагенты вводятся через отверстия во входном фланце 7. Схема расположения отверстий приведена на фиг. 2. По n отверстиям 8, расположенным по периметру квадрата со стороной l/3, поступает разбавленный аргоном селеноводород; по 2n отверстиям 9, расположенным по пеpиметpу квадрата со стороной 2l/3, подаются пары цинка с газом-носителем. Вокруг каждого из отверстий расположены по окружности отверстия 10, по которым поступает разделительный поток чистого аргона. Центры симметрии квадратов, по периметру которых расположены отверстия для подачи паров цинка с селеноводорода, совпадают между собой и совмещены с центром симметрии квадрата со стороной l на входном фланце реактора, образованного пазами для установки подложек (т.е. квадрат со стороной l представляет собой поперечное сечение реактора). Суммарное поперечное сечение отверстий для подачи смеси селеноводорода с аргоном S1, для подачи паров цинка с аргоном S2, для подачи защитного потока аргона S3. Для достижения цели изобретения устанавливают следующие соотношения суммарных поперечных сечений: S2/S1 = 1,5-2,8; S3/S1 = 4,5-8,0. Отличительным признаком изобретения является то, что в способе для получения поликристаллического ZnSe устанавливают соотношения потоков смеси паров цинка с аргоном и смеси селеноводорода с аргоном 1,5-1,8, защитного потока аргона и потока смеси селеноводорода с аргоном 9-12; суммарный поток газовой смеси через реактор составляет 690-750 см3/мин








Формула изобретения
СПОСОБ ПОЛУЧЕНИЯ ПОЛИКРИСТАЛЛИЧЕСКОГО СЕЛЕНИДА ЦИНКА И УСТРОЙСТВО ДЛЯ ЕГО ОСУЩЕСТВЛЕНИЯ. 1. Способ получения поликристаллического селенида цинка химическим осаждением из газовой фазы, включающий раздельную подачу потока смеси паров цинка с аргоном и потока смеси селеноводорода с аргоном с защитным потоком инертного газа вокруг каждого из них к нагретым подложкам и осаждение на них селенида цинка, отличающийся тем, что, с целью увеличения полезного выхода селенида цинка, потоки селеноводорода и цинка делят соответственно на n и 2n частей при объемном соотношении потоков: смеси паров цинка с аргоном и смеси селеноводорода с аргоном 1,5 - 1,8 защитного потока инертного газа и смеси селеноводорода с аргоном 9 - 12 и суммарный поток газовой смеси через реактор устанавливают равным 690 - 750 см3/мин.дм2. 2. Устройство для получения поликристаллического селенида цинка химическим осаждением из газовой фазы, содержащее корпус с внешним нагревателем, в котором расположены резервуар с цинком, реактор с подложками и средство для подачи смеси паров цинка с аргоном и смеси селеноводорода с аргоном, отличающееся тем, что, с целью увеличения полезного выхода селенида цинка, реактор составлен из подложек и имеет квадратное сечение, средство для подачи указанных смесей выполнено в виде входного квадратного фланца с отверстиями, расположенного на торце реактора, обращенного к резервуару с цинком и имеющего 2n отверстий по периметру квадрата со стороной 2l/3 для подачи смеси паров цинка с аргоном и n отверстий по периметру квадрата со стороной l/3 для подачи смеси селеноводорода с аргоном, где l - длина стороны квадратного фланца, центры симметрии квадратов, по периметру которых расположены отверстия, совмещены с центром симметрии квадратного фланца, а вокруг каждого из отверстий по концентричным окружностям расположены отверстия для подачи защитного потока аргона, соотношение суммарной площади сечения отверстий для ввода смеси паров цинка с аргоном и отверстий для ввода смеси селеноводорода с аргоном составляет 1,5 - 2,8, а соотношение суммарной площади сечения отверстий для ввода защитного газа и отверстий для ввода смеси селеноводорода с аргоном составляет 4,5 - 8,0.РИСУНКИ
Рисунок 1, Рисунок 2, Рисунок 3, Рисунок 4