Сталь на основе алюминия для анодов солевых химических источников тока
Использование: солевые химические источники тока с алюминиевым анодом. Сущность изобретения: сплав на основе алюминия для солевого химического источника тока содержит, мас.%: олово 0,05 - 0,25; галлий 0,005 - 0,1; свинец 0,005 - 0,1; натрий 0,0001 - 0,01; стронций 0,0001 - 0,01; алюминий остальное. Указанный сплав обладает пониженной скоростью коррозии, что повышает эффективность и надежность источника. 2 табл.
Изобретение относится к химическим источникам тока, а именно к солевым химическим источникам тока с алюминиевым анодом.
Для изготовления химических источников тока с целью получения электроэнергии путем использования электрохимической реакции между воздушным катодом и металлическим анодом, в качестве анодов используют алюминиевые сплавы. Известен состав сплава для анодов, приведенный в [1] при следующем соотношении компонентов, мас. Кремний 0,002-0,006 Олово 0,03-0,02 Галлий 0,007-0,03 Алюминий (чист. 99,995) Остальное Сплав обладает довольно отрицательным значением стационарного потенциала и потенциала под током, однако низкая коррозионная стойкость и высокая скорость выделения водорода при электрохимической коррозии не позволяют эффективно применять его в солевых химических источниках тока. Известен также состав сплава, приведенный в [2] при следующем соотношении элементов, мас. Индий 0,005-0,05 Цинк 0,05-8,0 Магний 0,02-2,0 Марганец 0,01-0,3 Галлий 0,003-0,05 Кремний 0,03-0,4 Алюминий Остальное Сплав обладает достаточно высоким значением стационарного потенциала, однако высокая скорость электрохимической коррозии и низкое значение потенциала под нагрузкой не позволяют применять его в солевых химических источниках тока с приемлемыми эксплуатационными характеристиками. В [3] приведен состав сплава для анодов при следующем соотношении элементов, мас. Индий 0,005-0,05 Цинк 0,05-8,0 Магний 0,02-2,0 Марганец 0,01-0,3 Галлий 0,003-0,05 Железо 0,03-0,3 Кремний 0,03-0,4 Медь До 0,02 Алюминий Остальное Сплав обладает высоким отрицательным значением стационарного потенциала, однако при поляризации потенциал резко сдвигается в положительную сторону. Кроме того, из-за относительно высоких значений содержания в сплаве железа и меди скорость коррозии сплава высока как в бестоковом режиме, так и при поляризации. Совокупность этих отрицательных факторов не позволяет эффективно применять указанный сплав в солевых химических источниках тока. Наиболее близким по составу и свойствам к предложенному в изобретении составу сплава является состав сплава по [4] при следующем соотношении компонентов, мас. Галлий 0,01-0,2 Олово 0,01-0,2 Свинец 0,01-0,2 Алюминий Остальное Указанный состав сплава взят за прототип (базовый объект). Сплав обладает достаточно отрицательным значением стационарного потенциала, однако значение потенциала под током не достаточно отрицательно, а скорость саморастворения сплава под током высока, что препятствует широкому применению сплава в солевых химических источниках тока. Целью настоящего изобретения является повышение значений электрохимических параметров и снижение скорости коррозии сплава, что способствует существенному повышению надежности и эффективности применения солевых химических источников тока с алюминиевым анодом, а также расширению области использования анодов из алюминиевых сплавов в солевых химических источниках тока различного назначения. Поставленная цель достигается тем, что предлагается состав сплава для анодов солевых химических источников тока, включающий олово, галлий и свинец, который дополнительно содержит натрий и стронций при следующем соотношении компонентов, мас. Олово 0,05-0,25 Галлий 0,005-0,1 Свинец 0,005-0,1 Натрий 0,0001-0,01 Стронций 0,0001-0,01 Алюминий Остальное Основным отличием предлагаемого сплава от прототипа (базового объекта) является то, что натрий, вследствие своей активности, в процессе анодного растворения сплава образует большое количество ионов металла, которые переходят в электролит, оставляя на поверхности анода свободные электроны, что повышает электрохимическую активность сплава, сдвигая значение его стационарного потенциала и потенциала под током в отрицательную сторону. Действие стронция аналогично действию натрия, однако учитывая существенно меньшую растворимость Sr(OH)2 (приблизительно на два порядка меньшую, чем для NaOH) основного продукта реакции растворения стронция в нейтральных солевых растворах, скорость его перехода из сплава в раствор существенно меньше, чем у натрия, что обеспечивает стабильность поддержания отрицательного значения потенциала как в отсутствии тока, так и под нагрузкой, а также снижение скорости коррозии. Составы исследованных сплавов в сравнении с прототипом и значения сравнительных параметров для них приведены в табл. 1 и 2. В качестве сравнительных параметров были выбраны следующие характеристики:



Формула изобретения
Галлий 0,005 0,1
Свинец 0,005 0,1
Натрий 0,0001 0,01
Стронций 0,0001 0,01
Алюминий Остальное
РИСУНКИ
Рисунок 1
Похожие патенты:
Изобретение относится к электротехнике и касается производства химических источников тока
Катод тионилхлоридно-литиевого элемента // 2291520
Изобретение относится к химическим источникам тока, а конкретнее касается катода тионилхлоридно-литиевого элемента
Изобретение относится к области электротехники, в частности к изготовлению топливных элементов, в которых требуется регулирование уровня гидротации мембраны из полимерного электролита во время работы
Изобретение относится к области электротехники, в частности к способу изготовления каталитического слоя топливного элемента, который включает диспергирование спиртового раствора платиновой черни путем подачи его через полую металлическую иглу-анод в электрическое поле между анодом и коаксиальным с ним кольцевым управляющим электродом, на которые подают разность потенциалов U, и нанесение образовавшейся струи капель раствора платиновой черни на поверхность носителя каталитического слоя, помещенного на подложку-катод, при разности потенциалов между кольцевым управляющим электродом и катодом U1
Электрод для литиевой вторичной батареи, литиевая вторичная батарея и способ его изготовления // 2397575
Изобретение относится к электроду для литиевой вторичной батареи, литиевой вторичной батарее и способу его изготовления
Изобретение относится к электротехнической промышленности, в частности к анодным материалам для литий-ионных ХИТ
Изобретение относится к катодному активному материалу для литиевых вторичных батарей с высокой безопасностью, к способу изготовления этого материала и к литиевым вторичным батареям, содержащим этот материал
Соединение разнородных материалов // 2406591
Изобретение относится к способу соединения разнородных материалов, имеющих различную пластичность, композиту разнородных материалов и электрохимическому устройству
Изобретение относится к катодному активному материалу для литиевых вторичных батарей с высокой безопасностью, к способу изготовления этого материала и к литиевой вторичной батарее, содержащей этот материал
Изобретение относится к анодным активным материалам ядерно-оболочечного типа для литиевых вторичных батарей, способам приготовления этого материала и литиевым вторичным батареям, содержащим этот материал
Изобретение относится к электротехнической промышленности и может быть использовано при производстве литиевых аккумуляторов с катодами на основе литий-железо фосфатов