Устройство для бесконтактного измерения частоты вращения колеса транспортного средства
Использование: в измерительной технике и автоматике для измерения частоты вращения колеса транспортного средства, в частности автомобиля. Сущность изобретения: устройство для бесконтактного измерения частоты вращения колеса транспортного средства содержит кодовый монолитный зубчатый ферромагнитный диск из магнитомягкого материала со сторонним магнитом, в зоне которого находится чувствительный элемент в виде катушки индуктивности с насыщающимся сердечником, питаемый от источника высокой частоты блок преобразования, обеспечивающий получение на выходе электрического сигнала в виде импульсов различной временной длительности, и блок обработки сигналов. Блок преобразования построен на пассивных элементах и содержит три диода, резистор и катушку индуктивности. Благодаря особому расположению неподвижного магнита относительно сердечника чувствительного элемента - нейтраль магнита совпадает с осью симметрии торца сердечника - увеличена существенно глубина изменения индуктивности катушки при вращении диска. Это позволяет увеличить воздушные зазоры между подвижными частями устройства. 1 з.п. ф-лы, 6 ил.
Изобретение относится к измерительной технике и автоматике и может быть использовано для измерения частоты вращения колеса транспортного средства, например автомобиля.
Известно устройство для измерения частоты вращения колеса [1] содержащее составной кодовый диск из двух зубчатых полюсных наконечников, установленный в зоне магнитного поля чувствительный элемент в виде тороидального трансформатора с насыщающимися сердечником и двумя обмотками возбуждения и сигнальной и преобразующее устройство, состоящее из двух электронных блоков. Недостатками такого устройства являются сложность конструкции составного кодового диска, а также сложность устройства схемы преобразования полезного сигнала. Наиболее близким по технической сущности к предлагаемому устройству является датчик оборотов [2] содержащий кодовый ферромагнитный диск с аксиально намагниченными магнитами чередующейся полярности на наружной цилиндрической поверхности диска, в зоне магнитного поля которых находится чувствительный индуктивный элемент в виде насыщающегося магнитопровода, охватывающего своими концами разноименные полюса магнитов, с намотанной вокруг него электрической обмоткой, соединенной с содержащим инвертор и два усилителя преобразующим устройством, питающим обмотку напряжением высокой частоты, и обрабатывающий блок, который состоит из интегратора и преобразователя амплитуда-код и позволяет получить на выходе сигналы в виде импульсов, частота которых определяется частотой вращения кодового диска, а следовательно, и контролируемого колеса. Недостатками этого устройства являются сложность конструкции составного кодового диска, сложность преобразующего электронного устройства с дополнительным источником питания и большим числом функциональных связей с чувствительным элементом, малая глубина изменения индуктивности катушки, что снижает эксплуатационную надежность в целом. Цель изобретения упрощение конструкции и повышение надежности за счет выполнения кодового диска монолитным, особого расположения подмагничивающего магнита и существенного упрощения преобразующего устройства. Для этого в устройстве для бесконтактного измерения частоты вращения колеса транспортного средства, содержащем кодовый зубчатый ферромагнитный диск, магнит, в зоне которого находится чувствительный элемент в виде катушки индуктивности с насыщающимся сердечником, блок преобразования, блок обработки сигналов, кодовый диск выполнен монолитным из магнитомягкого материала, магнит в виде четырехгранной призмы установлен с боковой поверхности диска в зоне чувствительного элемента и неподвижен относительно него, ось намагничивания магнита параллельна плоскости кодового диска и перпендикулярна его радиусу, нейтральная плоскость магнита является общей с плоскостью симметрии торцевой грани сердечника чувствительного элемента и проходит через центр диска, ось симметрии в направлении намагничивания грани магнита, параллельной плоскости диска, лежит в плоскости, проходящей через середину воздушного зазора между поверхностью зубца по внешней окружности диска и обращенной к этой поверхности плоскостью сердечника чувствительного элемента. Блок преобразования построен на пассивных элементах и содержит три диода, конденсатор и резистор, начало обмотки чувствительного элемента подключено к первому входу блока преобразования, соединенного с катодом первого диода, анод которого одновременно соединен с катодом второго диода и через последовательно включенный конденсатор с вторым входом блока преобразования, анод второго диода соединен с концом обмотки чувствительного элемента, с катодом третьего диода и с первым выходом блока преобразования, анод третьего диода соединен с вторым выходом блока преобразования, а катод через последовательно включенный резистор с концом обмотки чувствительного элемента. Упрощение конструкции кодового зубчатого диска, выполненного монолитным, простота блока преобразования, построенного на малом числе пассивных элементов с уменьшенным количеством функциональных связей, существенно упрощают все устройство и повышают его надежность. Расположение стороннего магнита, при котором его нейтральная плоскость совмещена с плоскостью симметрии торцевой грани сердечника чувствительного элемента в предлагаемом устройстве, увеличивает глубину изменения индуктивности и позволяет по сравнению с прототипом работать с увеличенным воздушным зазором между подвижной и неподвижной частями устройства, что также повышает эксплуатационную надежность. На фиг. 1 приведена блок-схема устройства для измерения частоты вращения колеса транспортного средства; на фиг. 2 конструкция кодового диска с чувствительным элементом и сторонним магнитом; на фиг. 3 вид А на фиг. 2; на фиг. 4 магнит; на фиг. 5 электрическая схема блока преобразования; на фиг. 6 а и б диаграммы напряжений на катушке индуктивности и выходе преобразующего устройства. Устройство содержит монолитный зубчатый кодовый диск 1 из магнитомягкого материала со сторонним магнитом, чувствительный элемент 2 в виде катушки индуктивности с насыщающимся сердечником в зоне магнитного поля магнита, блок 3 преобразования и блок 4 обработки сигналов. Кодовый диск 1 (фиг. 2) выполняется монолитным из магнитомягкого материала, например феррита. Чувствительный элемент 2 представляет собой катушку 5 индуктивности с П-образным насыщающимся сердечником 6, например, из феррита. Магнит 7 в виде четырехгранной призмы расположен с боковой стороны диска 1 в зоне радиального воздушного зазора, который имеется между сердечником и зубцами 8 диска. Магнит неподвижен относительно сердечника. Ось симметрии боковой грани магнита, параллельной плоскости диска, вдоль оси намагничивания лежит в плоскости, перпендикулярной радиусу диска и проходящей через середину воздушного зазора между поверхностью зубца по внешней окружности диска и обращенной к этой поверхности плоскостью сердечника чувствительного элемента. Нейтральная плоскость магнита является общей с плоскостью симметрии торцевой грани сердечника, параллельной плоскости диска, и проходит через центр кодового диска. Ширина зубца в диске равна ширине впадины. Ширина сердечника 6 чувствительного элемента меньше ширины зубца 8 по наружной окружности диска. На фиг. 5 показаны катушка 5 индуктивности с насыщающимся сердечником, диоды 10 12, конденсатор 13, резистор 14, входные клеммы 15 и 16 преобразующего блока и выходные клеммы 17 и 18 преобразующего блока. Входом, на который подается напряжение высокой частоты, являются клеммы 15 и 16. Выходом блока преобразования являются клеммы 17 и 18, т.е. клеммы 16 и 18 являются общими и для входа, и для выхода устройства. Работа предлагаемого устройства основана на изменении индуктивности катушки чувствительного элемента при вращении кодового диска. Примем за исходное первое крайнее угловое положение диска, при котором его зубец 8 находится напротив магнита 7 и перекрывает его. В этом положении свободные концы П-образного сердечника 6 чувствительного элемента замыкаются магнитопроводящим зубцом диска и индуктивность катушки максимальна, если не учитывать влияние магнита 7. Благодаря тому, что магнит 7 установлен неподвижно относительно сердечника 6, а его нейтральная плоскость лежит в плоскости торца сердечника 6, влияние магнитного поля на магнитное состояние сердечника незначительно и сердечник оказывается ненасыщенным. Если, например, удалить магнит 7, индуктивность катушки практически не изменится. При повороте диска на зубцовое деление против магнита 7 оказывается не зубец, а впадина, при этом полюса магнитов оказываются напротив соседних зубцов. Для магнита образуется замкнутая магнитная цепь и поток магнита пронизывает сердечник 6 чувствительного элемента и насыщает его. Индуктивность катушки при этом достигает своего минимума. Как уже отмечалось при угловом положении кодового диска, когда его зубец 8 находится напротив магнита (первое крайнее положение), магнит пpактически не влияет на индуктивность, сердечник не насыщен. В промежуточных положениях зубцов кодового диска относительно магнита 7 значение индуктивности катушки будет также промежуточным. Изменение индуктивности катушки при вращении диска в дальнейшем используется в блоке преобразования. От источника питания высокой частоты напряжение Uп в форме меандра (фиг. 6 а) подается на вход блока преобразования (клеммы 15 и 16, фиг. 5). Если подаваемый на вход импульс имеет положительную полярность (как показано на фиг. 6 а) в интервале времени t1 t2, то в этом случае заряжается конденсатор 13 до потенциала источника питания Uп черед открытый диод 10. Диод 11 при этом закрыт и не пропускает положительный импульс напряжения UL на катушку 5 индуктивности чувствительного элемента и напряжение на выходе преобразующего устройства (клеммы 17 и 18) равно нулю. В момент времени t2 (фиг. 6 а, б и в) изменяется полярность входного напряжения. Диод 10 закрывается, а диод 11 открывается, и в катушку 5 индуктивности подается отрицательный импульс, амплитуда которого равна сумме UL Uп + Uс где Uп амплитуда относительного импульса входного напряжения; Uс амплитуда напряжения на конденсаторе. Практически происходит скачкообразное удвоение амплитуды напряжения отрицательного импульса. Через катушку 5 индуктивности при этом потечет ток, так как открыт диод 11 и создана замкнутая электрическая цепь. В катушке индуктивности происходит накопление электромагнитной энергии, которая пропорциональна индуктивности катушки Lк. В течение действия отрицательного импульса в интервале времени t2 t3 напряжение на выходе преобразующего устройства (клеммы 17 и 18) остается практически равным нулю, так как диод 12 открыт и шунтирует выход преобразующего устройства. В момент времени t3 (фиг. 6 а) происходит изменение полярности входного импульса на противоположную положительную. Диод 11 запирается и остается закрытым в течение всей длительности входного положительного импульса до момента времени t4. Катушка 5 индуктивности с накопленной электромагнитной энергией в течение действия входного импульса положительной полярности в интервале времени t3 t4 остается отключенной от высокочастотного источника питания. Диод 12 при этом закрыт. Периодически запасенная в катушке индуктивности электромагнитная энергия используется для создания на выходе устройства (клеммы 17 и 18) полезных информационных сигналов в виде импульсов различной временной длительности. Длительность импульса во времени зависит и определяется угловым положением зубцов кодового диска относительно сердечника катушки индуктивности. Наблюдаемый переходный процесс, возникающий в катушке индуктивности в момент изменения отрицательной полярности входного сигнала на положительную, приводит к появлению на выводах 19 и 20 катушки индуктивности напряжения UL, описываемого уравнением UL= Uo





Формула изобретения
1. УСТРОЙСТВО ДЛЯ БЕСКОНТАКТНОГО ИЗМЕРЕНИЯ ЧАСТОТЫ ВРАЩЕНИЯ КОЛЕСА ТРАНСПОРТНОГО СРЕДСТВА, содержащее ферромагнитный зубчатый кодовый диск, постоянный магнит, установленный в зоне магнитного поля чувствительный элемент в виде катушки индуктивности с насыщающимся сердечником, блок преобразования, соединенный с чувствительным элементом и подключенный к источнику питания высокой частоты, и блок обработки сигналов, соединенный с выходом блока преобразования, отличающееся тем, что зубчатый кодовый диск выполнен монолитным из магнитомягкого материала, а постоянный магнит выполнен в виде четырехгранной призмы и установлен неподвижно с боковой стороны кодового диска, при этом ось намагничивания постоянного магнита параллельна плоскости кодового диска и перпендикулярна его радиусу, а нейтральная плоскость постоянного магнита совпадает с плоскостью симметрии торцевой грани сердечника чувствительного элемента и проходит через центр кодового диска, ось симметрии в направлении намагничивания грани постоянного магнита, параллельной плоскости кодового диска, лежит в плоскости, проходящей через середину воздушного зазора между внешней поверхностью зубца по окружности кодового диска и обращенной к этой поверхности плоскостью сердечника чувствительного элемента. 2. Устройство по п.1, отличающееся тем, что блок преобразования содержит три диода, конденсатор и резистор, при этом анод первого диода соединен с катодом второго диода и через конденсатор с входом блока преобразования, анод второго диода соединен через резистор с катодом третьего диода и с выходом блока преобразования, катод первого диода и анод третьего диода соединены с началом катушки индуктивности чувствительного элемента, а анод второго диода с ее концом.РИСУНКИ
Рисунок 1, Рисунок 2, Рисунок 3, Рисунок 4, Рисунок 5, Рисунок 6