Центрифуга для очистки жидкости
Использование: изобретение относится к центрифугам для очистки жидкости, например масла в двигателях внутреннего сгорания, рабочих жидкостей в гидросистемах машин. Сущность изобретения: центрифуга содержит цилиндрический корпус 1, разделенный опорной перегородкой 10 на два отсека. В одном отсеке корпуса на полых полуосях 4 и 5 смонтирован ротор с колонкой 7, а в другом размещена ускорительная камера 8 имеет сборник 19 отложений механических примесей, оснащена механическим приводом 14 вращения и разделена диском 15 на две секции, сообщенные по периферии кольцевой щелью. В одной секции ускорительной камеры 8 радиально установлены вертикальные лопасти 18 для равномерного распределения и раскручивания отводимой на периферию камеры жидкости. Вторая секция камеры выполнена полой и в ней расположена нижняя часть лопастной турбинки 9 гидропривода центрифуги. 3 ил.
Изобретение относится к центрифугам, предназначенным для очистки жидкости, например масла в двигателях внутреннего сгорания, в централизованных системах смазки обкаточных цехов, в регенерационных установках; рабочих жидкостей в гидросистемах машин; топлива и др.
Известна, например, центрифуга с гидроприводом [1] включающим гидродинамическую передачу, в корпусе которого на параллельных валах установлены насосное и турбинное колеса с лопатками. В таком приводе для повышения его энергоемкости в корпусе передачи установлено дополнительное колесо, которое снабжено индивидуальным приводом. Такой привод центрифуги отличается конструктивной сложностью и наличием двух независимых индивидуальных приводов насосного и дополнительного колес. Известна реактивная центрифуга для очистки топлива или масла [2] в которой кроме гидрореактивного привода имеется повышающий зубчатый редуктор, передающий вращение от гидрореактивного привода к ротору. Недостатками такого привода являются его сложность и необходимость иметь две раздельные системы подключения центрифуги, одна из которых, нагнетательная, питает гидрореактивный привод, а сепарирующая часть центрифуги подключается во всасывающую линию гидравлической системы. Кроме того, центрифуга сочетает в себе известные недостатки как реактивного привода, так и зубчатого повышающего реактора. Наиболее близкой к предлагаемой по технической сущности и достигаемому положительному эффекту является центрифуга для очистки жидкости [3] включающая ротор, установленный в корпусе на полуосях с осевыми каналами для подвода масла в ротор и отвода очищенного масла, камеру, расположенную под основанием корпуса, рабочие лопатки, размещенные в камере, и направляющий аппарат, сопла которого выполнены в стенке камеры по наружному диаметру рабочих лопаток. Гидропривод этой центрифуги работает по принципу центростремительной радиально-осевой турбины, в которой поток подводится к лопаткам со скоростью истечения из направляющего аппарата. Такое исполнение гидропривода позволяет увеличить средний диаметр рабочих лопаток до необходимых размеров без ограничения и получить большой вращающий момент, что дает возможность осуществить привод роторов увеличенных объемов. Недостатками центрифуги является то, что с увеличением радиуса рабочих лопаток увеличивается и их окружная скорость, поэтому для достижения высокой эффективности очистки повышением скоростного режима ротора, поток жидкости необходимо разгонять в направляющем аппарате до больших скоростей, увеличивая при этом расход жидкости или уменьшая сечение сопл, что приводит к увеличению гидравлического сопротивления. В отдельных случаях уменьшение сечения сопл ограничивается технологическими возможностями, а увеличение расхода жидкости может привести к смыву отложений в роторе и уносу частиц твердой фазы. Эти факторы ограничивают быстроходность объемных роторов и эффективность очистки. Целью изобретения является повышение степени очистки жидкости путем увеличения частоты вращения ротора. Для этого в центрифуге для очистки жидкости, содержащей вертикальный цилиндрический корпус с крышками, смонтированный внутри корпуса на полых полуосях ротор с колонкой, имеющей каналы для подвода и отвода жидкости, и гидропривод, включающий лопастную турбинку, укрепленную внутри нижней полуоси ротора, корпус центрифуги разделен опорной перегородкой на два отсека, а гидропривод дополнительно содержит ускорительную камеру для создания вихревого движения поступающей жидкости, причем ротор размещен в одном отсеке корпуса, а ускорительная камера установлена на полых полуосях соосно с ротором в другом отсеке, имеет сборник отложений механических примесей, оснащена механическим приводом вращения и разделена диском на две секции, сообщенные по периферии кольцевой щелью, при этом в одной из секций радиально установлены вертикальные лопасти для равномерного распределения и раскручивания отводимой на периферию камеры жидкости, а другая секция выполнена полой и в ней расположена нижняя часть лопастной турбинки. В сравнении с прототипом, где поток, прежде чем воздействовать на лопастную турбинку, разгоняется в направляющем аппарате, в предлагаемой центрифуге поток предварительно раскручивается радиальными лопастями вращающейся ускорительной камеры при отводе жидкости на периферию, а потом при радиальном стоке закрученного потока в свободном пространстве полой секции ускорительной камеры образуется вихревое движение жидкости, в котором при сохранении постоянного значения момента на произвольном радиусе поля вихря происходит увеличение скорости вращения по закону, близкому к закону свободного вихря. Наличие вращающейся с постоянной угловой скоростью ускорительной камеры позволяет сообщить всем элементам потока, равномерно распределенного по периферийному периметру камеры, практически равные и достаточно большие окружные скорости без дополнительных гидравлических потерь, что позволяет получить высокую интенсивность вихревого движения жидкости, которая приводит к увеличению скорости вращения ротора. Кроме этого, во вращающейся ускорительной камере происходит предварительная центробежная очистка жидкости от наиболее крупных фракций механических примесей и их накопление в сборнике отложений. Таким образом последовательно осуществляется двухступенчатая центробежная очистка жидкости сначала в ускорительной камере, а затем в роторе, что в итоге повышает эффективность очистки и увеличивает общую грязеемкость центрифуги. Все это позволяет считать, что предлагаемое техническое решение соответствует критерию изобретения "новизна". Сравнение предлагаемого решения не только с прототипом, но и с другими техническими решениями в данной области техники, не позволило выявить у них признаки, отличающие предложенное решение от прототипа, что позволяет сделать вывод о соответствии критерию "существенные отличия". На фиг. 1 представлена центрифуга для очистки жидкости, продольный разрез; на фиг. 2 сечение А-А на фиг. 1; на фиг. 3 сечение Б-Б на фиг. 1. Центрифуга состоит из вертикального цилиндрического корпуса 1 с крышками 2 и 3, размещенного внутри корпуса и установленного на полых полуосях 4 и 5 ротора 6 с колонкой 7, имеющей каналы для подвода и отвода жидкости. Гидропривод ротора состоит из ускорительной камеры 8 и лопастной турбинки 9. Корпус центрифуги внутри разделен опорной перегородкой 10 на два отсека. В одном отсеке размещен ротор 6, а в другом вращающийся корпус 11 ускорительной камеры 8, который установлен на полых полуосях 12 и 13 и снабжен механическим приводом 14. Ускорительная камера 8 по высоте разделена диском 15 на две секции 16 и 17. В секции 16 радиально установлены лопасти 18, а секция 17 выполнена полой. Кроме того, в ускорительной камере выполнен сборник 19 отложений механических примесей. Предлагаемая центрифуга работает при постоянно включенном механическом приводе 14, сообщающем корпусу ускорительной камеры вращение с постоянной угловой скоростью. Жидкость под давлением подается по каналу полуоси 13 вращающегося корпуса 11 в секцию 16 ускорительной камеры 8, отводится на периферию, раскручиваясь при этом радиальными лопастями 18, огибает диск 15 и осуществляет радиальный сток в свободном пространстве полой секции 17, где и образуется вихревое движение закрученной жидкости. Закрученная в ускорительной камере жидкость направляется на лопастную турбинку 9 и передает момент ротору 6, приводя его во вращение, затем по осевому каналу полуоси 4 проходит в полость ротора и через осевой канал полуоси 5 очищенная жидкость отводится к потребителю. При малом расходе жидкости или при его отсутствии вращение ротора будет нестабильным. Момент, передаваемый лопастной турбинке 9 ротора, определяется интенсивностью закрученного в ускорительной камере потока жидкости, параметры которого и определяют скоростной режим ротора. Величина момента, передаваемого лопастной турбинке потоком закрученной жидкости, определяется по формуле Mс=m
















Формула изобретения
РИСУНКИ
Рисунок 1, Рисунок 2, Рисунок 3