Термоэмиссионный реактор-преобразователь
Изобретение относится к устройствам прямого преобразования тепловой энергии в электрическую термоэмисионным способом. Сущность изобретения: корпус термоэмиссионного реактора преобразователя заполнен парами цезия, электрогенерирующие элементы выполнены плоскими с оболочкой эмиттера швеллерной формы и коллекторами, установленными эквидистантно боковым рабочим поверхностям эмиттера. Система охлаждения коллекторов выполнена в виде двух полых торцевых дисков, соединенных полыми коммутирующими пластинами, на которых закреплены коллекторы, а проводники, соединяющие элементы, выполнены из гофрированных лент. 6 ил., 2 табл.
Изобретение относится к устройствам прямого преобразования тепловой энергии в электрическую термоэмиссионным способом.
Известно, что термоэмиссионный преобразователь тепловой энергии в электрическую (ТЭП) является источником электрической энергии с низким напряжением и высокой плотностью тока. Такое свойство ТЭП делает принципиально важным вопрос о джоулевых потерях электрической мощности на электродах ТЭП. С целью уменьшения этих потерь и увеличения выходного напряжения на клеммах термоэмиссионных устройств (ТЭУ), последние состоят из множества ТЭП конечных размеров, соединенных между собой последовательно. В большинстве известных конструкций термоэмиссионного реактора-преобразователя (ТРП), в котором тепло от ядерного топлива превращается в электрическую энергию с помощью ТЭП, последние имеют цилиндрическую геометрию электродов. В эмиттерную оболочку такого ТЭП помещают ядерное топливо. ТЭП в совокупности с ядерным топливом называют электрогенерирующим элементом (ЭГЭ). Наибольшее распространение получили конструкции ТРП, в которых ЭГЭ соединены последовательно в виде гирлянды. Длина гирлянды, т.е. электрогенерирующий канал (ЭГК), соответствует длине активной зоны реактора. Основными недостатками таких конструкций являются сложность отработки ЭГК и всей конструкции ТРП в целом в лабораторных условиях с электронагревом, имитирующим тепло от ядерного топлива, что ведет к удлинению сроков отработки и создания ТРП, а также к их существенному удорожанию, так как подготовка, проведение и анализ результатов испытаний в реакторных условиях занимают значительно больше времени и стоят значительно дороже чем в лабораторных; малая объемная доля ядерного топлива, что ведет к увеличению критической загрузки; относительно большие потери тепловой и электрической мощности на электродах ЭГЭ, которые связаны в основном с джоулевыми потерями электрической мощности и неравномерностью распределения температуры вдоль эмиттерной оболочки ЭГЭ; эта неравномерность в значительной степени связана с теплоотводом по коммутационной перемычке, соединяющей эмиттер с коллектором и привариваемой к торцу эмиттера, а также отводом тепла по дистанционаторам. Известен термоэмиссионный реактор-преобразователь, содержащий герметичный цилиндрический корпус в виде обечайки, первого и второго фланцев, в котором размещены последовательно соединенные коммутирующими проводниками ЭГЭ, выполненные в виде протяженных эмиттеров, заполненных ядерным топливом, и коллекторов, установленных с межэлектродными зазорами, заполненными парами цезия, и систему охлаждения. В данной конструкции ТРП длина ЭГЭ соизмерима с длиной активной зоны реактора. В этой конструкции ЭГК состоит из одного ЭГЭ и поэтому его называют одноэлементным ЭГК. В ТРП с одноэлементными ЭГК их последовательное соединение происходит вне активной зоны. Однако существенный недостаток этой конструкции заключается в больших джоулевых потерях на электродах ЭГЭ при увеличенных плотностях тока. Поэтому такая конструкция может работать только при малых плотностях тока, а следовательно, при малых удельных электрических мощностях и малых КПД (1-2 Вт/см2 и 5-7% соответственно). Техническим результатом является увеличение выходной мощности и КПД ТРП за счет уменьшения потерь тепловой и электрической мощности на электродах ЭГЭ. Для достижения указанного технического результата в известном термоэмиссионном реакторе-преобразователе корпус выполнен с электроизолирующей обечайкой и заполнен парами цезия, а ЭГЭ выполнены плоскими с оболочками эмиттеров швеллерной формы, расположенных рядами, разделенными плоскими пластинами, на которых на электроизолирующих слоях жестко закреплены плоские коллекторы эквидистантно боковым рабочим поверхностям оболочек эмиттеров, при этом система охлаждения коллекторов выполнена в виде полости в первом фланце, полости, разделенной на входную и выходную части, выполненной в дополнительном фланце, установленном вне корпуса перед вторым фланцем, и соединенной с теплообменником и коммутирующих полостей, выполненных в плоских пластинах, а коммутирующие проводники выполнены в виде гофрированных линий с чередованием участков для закрепления вдоль оболочек эмиттеров и свободных участков, расположенных между гофрами с ортогональными отростками для соединения с коллекторами. Тепловой контур, предназначенный для выноса тепла, выделяющегося на коллекторах, выполнен таким образом, чтобы завершающей операцией сборки ТРП была установка цилиндрической обечайки корпуса и его герметизация. На фиг. 1 схематически изображен ТРП общий вид; на фиг. 2, 3 и 4 сечения А-А, Б-Б и В-В на фиг. 1 соответственно; на фиг. 5 - коммутирующий проводник; на фиг. 6 - вольтамперные характеристики. ТРП содержит цилиндрическую обечайку 1 корпуса; первый и второй фланцы 2, дополнительный фланец 3, плоскопараллельную пластину 4, теплообменник 5, полость 6 для прокачки теплоносителя, изолирующий слой 7, коллектор 8, эмиттер 9, коммутирующий проводник 10. Кроме того, позициями 11 и 2 показаны ядерное топливо и ввод паров цезия соответственно (см. фиг. 2). ТРП также содержит межэлектродный зазор 13 и дистанционатор 14 (см. фиг. 3). На фиг. 5 показаны место 15 для крепления на эмиттерной оболочке; гофр 16, отросток 17 для соединения с коллектором, электрические клеммы 18. П р и м е р. На фиг. 6 приведены вольтамперные характеристики (ВАХ) ТЭП, полученные экспериментально в лабораторном приборе ТЭП с плоской геометрией электродов, в котором эмиттером служит грань (110) монокристалла вольфрама, а коллектор изготовлен из молибдена. Межэлектродный зазор 0,25 мм. ВАХ получены при температуре эмиттера ТЕ=1900 К; температура цезиевого резервуара ТР=600 К; температура коллектора ТС=1- 1000 К, 2-1200 К. Расчеты электрической мощности и КПД на выходе ЭГЭ проводят исходя из этих ВАХ при условии изотермичности электродных поверхностей ТЭП на основе следующих формул: Wв=j(V-VE-Vc); (1)


qcs - плотность теплового потока на коллектор, связанного с теплопроводностью паров цезия. Потери напряжения на электродах определяются по формуле
Vп=




S - площадь поперечного сечения оболочки электрода в направлении тока;
Iполн и Rполн - соответственно полный ток, проходящий через ЭГЭ, и полное сопротивление электрода в направлении протекания тока. Для расчетов данные по qz; qcs и

Формула изобретения
РИСУНКИ
Рисунок 1, Рисунок 2, Рисунок 3, Рисунок 4, Рисунок 5, Рисунок 6, Рисунок 7