Способ выращивания монокристаллов германия
Использование: металлургия полупроводников. Сущность изобретения: исходный германий расплавляют, добавляют (3-5)
10-4 мас.% неодима и вытягивают монокристалл на затравку. Увеличивают время жизни неосновных носителей заряда и снижают отношение времени жизни основных носителей заряда к времени жизни неосновных носителей заряда в германии.
Изобретение относится к металлургии полупроводниковых материалов и может быть использовано для получения германия с высоким временем жизни неосновных носителей заряда (
н ) и низким отношением времени жизни основных носителей заряда к времени жизни неосновных носителей заряда (К =
o /
н).
103 - 104 при температуре жидкого азота (77 К) в таких материалах ограничивают сферу его применения, особенно в производстве фотоэлектрических приборов и детекторов ионизирующих излучений, для которых область рабочих температур лежит в районе 77 К. Известен также способ выращивания монокристаллов германия методом Чохральского отличающийся тем, что с целью изучения возможностей получения легированного Ge со свойствами отличающимися от свойств Ge, легированного обычно применяемыми примесями, в качестве легирующей добавки в расплав вводится сплав германия с РЗЭ (неодимом). Однако, указанным выше способом невозможно получить кристаллы Ge с контролируемыми электрофизическими параметрами, что характерно для кристаллов, выращенных по методу Чохральского, легированных традиционными примесями III и V гр. Периодической системы элементов, так как, во-первых, неизвестно положение в запрещенной зоне энергетических уровней, появляющихся в результате легирования из тугоплавкого сплава Ge-РЭЭ, а во-вторых, получаемые кристаллы обладают высокой неоднородностью удельного сопротивления вдоль образующей слитков в силу низкого коэффициента сегрегации (1 10-5). Кроме того в материале, полученном по данному способу, в силу того, что неодим вводится в монокристалл в составе сплава, он присутствует в кристалле в виде тугоплавкого соединения неодим-германий (Яценко С.П., Федорова Е.Г. Редкоземельные элементы. Взаимодействие с р-металлами. М.: Наука, 1990, с.173.), и поэтому не обладает геттерирующими свойствами, способствующими удалению рекомбинационно-активных центров из кристалла. Таким образом, в данном материале невозможно достигнуть повышения времени жизни неосновных носителей заряда и снижения отношения времени жизни основных носителей заряда к времени жизни неосновных носителей заряда по сравнению с аналогичными величинами в монокристаллах Ge, полученных по методу Чохральского (Глазов В.М., Земсков В.С. Физико-химические основы легирования полупроводников. М.: Наука, 1967, с.309). Целью изобретения является повышение времени жизни неосновных носителей заряда и снижение отношения времени жизни основных носителей заряда к времени жизни неосновных носителей заряда в монокристалле германия. Поставленная цель достигается тем, что в процессе выращивания монокристалла по методу Чохральского из расплава, содержащего примесную добавку элемента Vа группы Периодической системы, в расплав дополнительно вводится примесная добавка редкоземельного элемента неодима. Сущность изобретения состоит в том, что вследствие высокой эффективности взаимодействия введенного в расплав неодима с остаточными технологическими примесями, увеличивается степень очистки расплава, т.е. атомы неодима в расплаве выступают в качестве внутреннего геттера. В результате выращенный кристалл обладает более низкой концентрацией рекомбинационно активных центров и центров прилипания, чем кристалл, выращенный без добавки и расплав неодима, что и определяет для него высокое время жизни неосновных носителей заряда и низкое отношение времени жизни основных носителей заряда к времени жизни неосновных носителей заряда. Содержание неодима в расплаве должно быть не меньше 3
10-4 мас.%, так как при меньшей концентрации не происходит увеличения
н и снижения К. Экспериментально установлено, что увеличение времени жизни неосновных носителей заряда на 350
10% при Т=293 К и на 680
10% при Т=77, и уменьшение отношения времени жизни основных носителей заряда к времени жизни неосновных носителей заряда на 1500%-2000% (Т=77 К) для различных кристаллов происходит при введении в расплав неодима в количестве примерно 4
10-4 мас.%. Дальнейшее увеличение концентрации неодима в расплаве свыше 5
10-4 мас.% и вплоть до 2
10-2 мас.% не приводит к улучшению данных характеристик. При концентрации неодима в расплаве выше 2
10-2 мас.% нижняя часть кристалла не пригодна для изготовления приборов, так как имеет крупноблочную структуру. Исходя из задач максимального повышения чистоты кристалла и экономии используемых материалов, весовой диапазон содержания неодима в расплаве следует выбирать в пределах (3-5)
10-4 мас.%. П р и м е р 1. На установке "Редмет-10" в расплав германия весом 0,5 кг вводят 6,65
10-6 г ортофосфата неодима в качестве легирующей добавки, обеспечивающей легирование германия фосфором. Выращивание производят по методу Чохральского в вакууме 10-5 атм. со скоростью 0,9 мм/мин. Тигель вращают со скоростью 7 об/мин, а затравку 20 об/мин. Из монокристалла были изготовлены образцы размерами 5х5х15 мм. Измерение электрических и рекомбинационных параметров показало, что образцы имеют электронный тип проводимости с удельным сопротивлением
=10 Ом см. Величина
н имела значение 6 4
10-5 с при Т=293 К и 2,42
10-7 с при Т=77 К, а величина отношения
o/
н значение 1,4
103 при Т=77 К. П р и м е р 2. На монокристалле германия, полученном способом, аналогично приведенному в примере 1, но из расплава, содержащего 0,5 кг германия, 6,65
10-6 г ортофосфата неодима, как легирующей добавки, и дополнительно 1,7
10-3 г неодима, что составляет 3,4
10-4 мас.4%, были произведены те же измерения, что и в примере 1. Получены следующие значения:
=10 Ом см;
н= 2,39
10-4с при Т=293 К и 1,65
10-6с при Т=77 К;
o/
н =7,4
101 при Т=77 К. П р и м е р 3. На монокристалле германия, полученном способом, аналогично приведенному в примере 1, но из расплава, содержащего 0,5 кг германия, 6,65
10-6г ортофосфата неодима, как легирующей добавки, и дополнительно 1,06
10-2г неодима, что составляет 2,1
10-3 мас.%, были произведены те же измерения, что и в примере 1. Получены следующие значения:
=10 Ом см;
н =2,15
10-4с при Т=293 К и 1,11
10-6с при Т=77 К;
o/
н=9.8
101 при Т=77 К. П р и м е р 4. На монокристалле германия, полученном способом, аналогично приведенному в примере 1, но из расплава, содержащего 0,5 кг германия, 6,65
10-6г ортофосфата неодима, как легирующей добавки, и дополнительно 5
10-4г неодима, что составляет 1
10-4 мас.%, были произведены те же измерения, что и в примере 1. Получены следующие значения:
=10 Ом см;
н = 7,5
10-5с при Т=293 К и 3,2
10-7с при Т=77 К;
o/
н=1,02
103 при Т=77 К. П р и м е р 5. При выращивании монокристалла германия способом, аналогично приведенному в примере 1, но из расплава, содержащего 0,5 кг германия, 6,65
10-6г ортофосфата неодима, как легирующей примеси, и дополнительно 1
10-1 г неодима, что составляет 2
10-2 мас.%, нижняя треть кристалла имела крупноблочную структуру. Как видно из примера 2, применение предложенного способа, заключающегося в введении в расплав неодима, позволяет в германии, выращенном по методу Чохральского, повышать время жизни неосновных носителей заряда и снижать отношение времени жизни основных носителей заряда к времени жизни неосновных носителей заряда по сравнению с прототипом (пример 1), являющимся базовым объектом. Из примера 3 видно, что увеличение концентрации неодима в расплаве до 2
10-3 мас.% не приводит к дальнейшему повышению времени жизни неосновных носителей заряда. Поэтому, исходя из поставленной задачи максимального повышения времени жизни неосновных носителей заряда и снижения коэффициента прилипания в германии, а также в целях экономного расходования редкоземельного элемента, оптимальный весовой диапазон содержания неодима в расплаве выбран в пределах (3-5)
10-4мас.%. Предложенный способ позволяет получать материал, для изготовления высококачественных детекторов ИК и ионизирующих излучений, фоторезисторов и других приборов, для которых высокая величина времени жизни неосновных носителей заряда и низкое отношение времени жизни основных носителей заряда к времени жизни неосновных носителей заряда определяющим образом влияют на улучшение эксплуатационных параметров приборов.Формула изобретения
СПОСОБ ВЫРАЩИВАНИЯ МОНОКРИСТАЛЛОВ ГЕРМАНИЯ, включающий расплавление исходного германия, введение в расплав добавки, содержащей неодим, и вытягивание монокристаллов на затравку, отличающийся тем, что, с целью повышения времени жизни неосновных носителей заряда и снижения отношения времени жизни основных носителей заряда к времени жизни неосновных носителей заряда в монокристаллах германия, неодим добавляют в расплав в количестве (3 - 5)
10-4 мас.%.
Похожие патенты:
Изобретение относится к полупроводниковой технологии и может найти применение при создании приборов оптоэлектроники и нелинейной оптики, в частности для полупроводниковых лазеров и преобразователей частоты
Изобретение относится к области металлургии полупроводников и может быть использовано для выращивания монокристаллов твердого раствора германий-кремний из газовой фазы
Способ получения кристаллов германия // 1461046
Изобретение относится к электронной и металлургической промышленности
Способ получения кристаллов германия // 1253181
Изобретение относится к электронной и металлургической промышленности, в частности к производству полупроводниковых материалов
О п и с хтги е изобретения(ц)408509 // 408509
Патент 298165 // 298165
Патент 160829 // 160829
Изобретение относится к способу получения монокристаллов молибдата свинца и позволяет увеличить размеры и улучшить качество монокристаллов
Изобретение относится к электронной промышленности, в частности к производству полупроводниковых соединений, и может быть использовано для выращивания монокристалла на основе A3B5
Способ получения кристаллов германия // 1461046
Изобретение относится к электронной и металлургической промышленности
Способ получения кристаллов германия // 1253181
Изобретение относится к электронной и металлургической промышленности, в частности к производству полупроводниковых материалов
Изобретение относится к способам получения кристаллов, а именно к способу получения монокристаллов вольфрамата свинца (далее PWO), и может быть использовано при изготовлении сцинтилляционных элементов, применяемых в детекторах ионизирующих излучений высоких энергий, работающих в условиях высоких дозовых нагрузок в трактах регистрации, требующих высокого временного разрешения
Изобретение относится к способам получения кристаллов, а именно к способу получения монокристаллов вольфрамата свинца, и может быть использовано при изготовлении сцинтилляционных элементов, применяемых в детекторах ионизирующих излучений высоких энергий, работающих в условиях высоких дозовых нагрузок в трактах регистрации, требующих высокого временного разрешения
Изобретение относится к области выращивания монокристаллов кремния, в частности к выделению отдельных частей слитков монокристаллов, в которых концентрация примеси углерода имеет заданные значения
Изобретение относится к способам получения кристаллов, а именно к способу получения монокристаллов вольфрамата свинца, и может быть использовано при изготовлении сцинтилляционных элементов

















