Устройство для электрохимической обработки воды или водных растворов

 

Полезная модель относится к области электрохимической обработки воды и/или водных растворов солей с целью изменения их окислительных, восстановительных и структурных свойств. Устройство содержит внутренний электрод 1 в виде стержня цилиндрической формы с торцевыми осевыми каналами 2,3. Коаксиально внутреннему электроду 1 установлен полый цилиндрический (трубчатый) наружный электрод 4. Между электродами коаксиально им установлена полупроницаемая диафрагма 5, разделяющая кольцевую полость на внутреннюю камеру 6 и наружную камеру 7. Наружная камера 7 имеет входной и выходной патрубки 8 и 9 соответственно, которые радиально закреплены на наружном электроде 4 и сообщаются с камерой 7 через отверстия в этом электроде.

Внутренняя камера 6 имеет осевые входной и выходной патрубки (штуцеры) 10 и 11 с внутренними осевыми отверстиями 12 и 13 соответственно. Штуцеры имеют внутреннюю резьбу, и навинчиваются на торцевые части внутреннего электрода 1, которые имеют меньший диаметр, чем сам электрод и снабжены резьбой 14 на наружной поверхности. Торцевые осевые каналы 2,3 сообщаются с внутренней камерой 6 при помощи каналов 15, оси которых ориентированы в радиальных плоскостях. Оси каналов 15 могут быть перпендикулярными по отношению к оси устройства, а могут быть ориентированы к ней под углом. Устройство с обоих торцов закрыто торцевыми крышками 16, 17 идентичными друг другу. Фиксация крышек 16, 17 осуществляется при навинчивании штуцеров 10, 11 на торцы внутреннего электрода 1. Между штуцером 10 и наружной поверхностью крышки 16 зажат токоподводящий электрод 18. Второй токоподводящий электрод 19 закреплен на наружном электроде 4. Выполнение внутреннего электрода стержневым повышает надежность устройства, а также его эффективность, т.к. не позволяет жидкости проходить через электрод напрямую, вследствие чего вся поступающая жидкость подвергается обработке в полной мере.

Полезная модель относится к области электрохимической обработки воды и/или водных растворов солей с целью изменения их окислительных, восстановительных и структурных свойств. Полезная модель может быть использована для очистки, обеззараживания, структурирования и кондиционирования воды, катодного умягчения воды, а также для получения дезинфицирующих, моющих, стерилизующих, консервирующих, отбеливающих, профилактических, лечебных растворов и растворов, устраняющих запахи.

Известен проточный электрохимический модульный элемент ПЭМ-4 для обработки жидкости [патент РФ 2145940, опубл. 27.02.2000], который имеет в своем составе внутренний стержневой электрод, наружный электрод, перегородку, разделяющую полость на внутреннюю и наружную камеру, каждая из которых имеет входной и выходной патрубки, которые закреплены на торцевых диэлектрических втулках, одинаковой конструкции для обоих торцов. Сборка устройства осуществлена при помощи болтов, ввернутых в торцы внутреннего электрода. Подвод и отвод обрабатываемой жидкость осуществляется боковыми радиально закрепленными патрубками, что вызывает необходимость дополнительной подводки с использованием изогнутых труб (коленных отводов) для установки устройства в линейную магистраль. Это определяет основной недостаток устройства.

В качестве прототипа выбрано устройство для электролитической обработки воды [патент РФ 2132821, опубл. 10.07.1999]. Вертикальный проточный электролизер имеет в своем составе внутренний полый (трубчатый) электрод, наружный электрод и перегородку, разделяющую кольцевую полость на внутреннюю и наружную камеру. На обоих торцах устройства имеется диэлектрическая втулка, которая закрывается диэлектрической колодкой, выполненной аналогично накидной гайке. Подвод и отвод обрабатываемой жидкости к внутренней камере осуществляется осевыми патрубками - штуцерами, которые навинчиваются на торцевые части внутреннего электрода. Одновременно эти штуцеры являются крепежными элементами, между которыми зажимаются через диэлектрические втулки все внутренние элементы. Конструкция прототипа позволяет монтировать проточный электролизер в линейной магистрали обрабатываемой жидкости без использования коленных отводов. Одним из недостатков конструкции является недолговечность внутреннего электрода. Это вызвано тем, что в тонкой стенке внутреннего трубчатого электрода имеются сквозные отверстия, через которые полость электрода сообщается с внутренней электролизной камерой. В электролизерах обычно используются электроды двух типов: металлические с покрытием из металлов платиново-иридиевой группы или графитовые. При выполнении электрода из металла наличие отверстий нарушает целостность защитного покрытия на внутреннем электроде, что приводит к электрохимической коррозии корпуса электрода при его контакте с агрессивной средой. При выполнении внутреннего электрода из графита наличие отверстий в стенке трубки повышает хрупкость электрода. И в том и в другом случае срок службы внутреннего электрода существенно снижается по сравнению со стержневыми электродами. Кроме того, в прототипе входной и выходной патрубки внутреннего электрода связаны осевым каналом напрямую. Это снижает эффективность работы устройства, т.к не вся жидкость попадает в рабочую камеру.

Таким образом, существует техническое противоречие: одни устройства надежны, но имеют избыточное количество конструктивных элементов - отдельно для подвода/отвода жидкости и отдельно крепежные элементы, например торцевые болты; другие устройства, например прототип, сравнительно проще, поскольку имеют элементы, совмещающие функции крепежа и подвода/отвода жидкости, но такие устройства имеют ограниченный срок службы и требуют частой замены внутренних электродов. Кроме того, они не достаточно эффективны.

В основу полезной модели поставлена задача - решить указанное противоречие и создать новое эффективное устройство для электрохимической обработки воды или водных растворов.

Достигаемый технический результат - повышение надежности (длительная эксплуатация устройства без замены внутреннего электрода) при сохранении возможности соосного подключения к магистрали обрабатываемой жидкости без использования коленных отводов (подключение напрямую).

Поставленная задача решается тем, что устройство для электрохимической обработки воды или водных растворов имеет в своем составе торцевые крышки, наружный трубчатый электрод, внутри которого коаксиально расположен внутренний электрод. Кольцевая полость между электродами разделена коаксиальной полупроницаемой диафрагмой (мембраной) на внутреннюю камеру и внешнюю камеру. Каждая камера снабжена входным и выходным патрубком, при этом входной и выходной патрубок внутренней камеры выполнены осевыми, соединены с внутренним электродом при помощи резьбового соединения и фиксируют положение торцевых крышек. Герметизация камер осуществлена при помощи кольцевых уплотнительных прокладок. От прототипа устройство отличается тем, что внутренний электрод выполнен стержневым, на его торцах выполнены осевые каналы для входа и/или выхода жидкости. Эти каналы, открытые со стороны торца электрода, сообщаются с патрубками внутренней камеры, а с противоположной стороны - сообщаются с внутренней камерой при помощи каналов, оси которых расположены в радиальных плоскостях.

Устройство может содержать торцевую прокладку в форме диска с буртиком, заглубляемым во внешнюю рабочую камеру.

Подробнее сущность полезной модели поясняется описанным ниже примером реализации и поясняется чертежом, на котором представлено продольное сечение устройства. В описанном примере отнесение патрубков, штуцеров и т.д. к входным и выходным - условно, т.к. система обратима. То же замечание относится к разделению электродов на катод и анод.

Устройство содержит внутренний электрод 1 в виде стержня цилиндрической формы с торцевыми осевыми каналами 2,3. Коаксиально внутреннему электроду 1 установлен полый цилиндрический (трубчатый) наружный электрод 4. Между электродами коаксиально им установлена полупроницаемая диафрагма (мембрана) 5, разделяющая кольцевую полость на внутреннюю камеру 6 и наружную камеру 7. Наружная камера 7 имеет входной и выходной патрубки 8 и 9 соответственно, которые радиально закреплены на наружном электроде 4 и сообщаются с камерой 7 через отверстия в этом электроде.

Внутренняя камера 6 имеет осевые входной и выходной патрубки (штуцеры) 10 и 11 с внутренними осевыми отверстиями 12 и 13 соответственно. Штуцеры имеют внутреннюю резьбу, и навинчиваются на торцевые части внутреннего электрода 1, которые имеют меньший диаметр, чем сам электрод и снабжены резьбой 14 на наружной поверхности. Торцевые осевые каналы 2,3 сообщаются с внутренней камерой 6 при помощи каналов 15, оси которых ориентированы в радиальных плоскостях. Оси каналов 15 могут быть перпендикулярными по отношению к оси устройства, а могут быть ориентированы к ней под углом.

Устройство с обоих торцов закрыто торцевыми крышками 16, 17 идентичными друг другу. Фиксация крышек 16, 17 осуществляется при навинчивании штуцеров 10, 11 на торцы внутреннего электрода 1. Между штуцером 10 и наружной поверхностью крышки 16 зажат токоподводящий электрод 18. Второй токоподводящий электрод 19 закреплен на наружном электроде 4. Герметичность устройства в целом достигается посредством уплотнительных колец 20, которые установлены под крышками 16, 17 и над ними. Для исключения прямого перетекания жидкостей между камерами 6 и 7 могут быть также установлены уплотнительные кольца. Однако более эффективным является уплотнение торцевыми прокладками, каждая из которых выполнена в форме диска 21 с буртиком, заглубляемым во внешнюю камеру 7, то есть входящим в зазор между наружным электродом 4 и диафрагмой (мембраной) 5.

Работа устройства иллюстрируется на следующих примерах, в которых токоподвод осуществлен таким образом, что внутренний электрод является анодом, а наружный - катодом.

В патрубок 10 подается обрабатываемая жидкость, из патрубка 11-отводится обработанная жидкость с кислыми или щелочными свойствами, в зависимости от полярности подключения электродов. В зависимости от того, какого свойства раствор необходимо получать, в устройство подается вода и/или различные солевые растворы. Патрубок 8 предназначен для подачи обрабатывающей жидкости, например солевого раствора, патрубок 9 - для отвода солевого раствора со щелочными или кислыми свойствами, в зависимости от полярности подключения электродов. Патрубки 8 и 9 могут быть объединены в единый внешний замкнутый контур (с подпиткой активного вещества).

Пример 1

В анодной или только в катодной камере диафрагменного электрохимического устройства происходит обработка воды или солевых растворов.

Для получения электроактивированного раствора с кислыми или щелочными свойствами в патрубок 10 подают раствор хлорида натрия или другие растворы солей. Через отверстие 2 и каналы 15 раствор поступает во внутреннюю электродную камеру 6. На электроды подается напряжение. Под давлением раствор (ионы), через полупроницаемую диафрагму 5 поступает во внешнюю электродную камеру 7. В процессе работы устройства образуются два противоположно заряженных потока ионов на внешней и внутренней поверхностях диафрагмы 5, между потоками возникает разность потенциалов, что приводит к увеличению напряженности электрического поля в диафрагме, в результате повышается подвижность ионов в порах диафрагмы и снижается электрическое сопротивление устройства. В результате образуется электроактивированный раствор - с кислыми или щелочными свойствами, в зависимости от полярности подключения электродов, который выводится через каналы 15, 3 и патрубок 11. Через патрубок 8 может также подаваться 1% раствор хлорида натрия.

Пример 2

Для получения дезинфицирующего раствора через патрубок 10 подают воду, которая поступает во внутреннюю электродную камеру 6, как это описано выше. Одновременно через патрубок 8 подают концентрированный раствор хлорида натрия, который циркулирует во внешнем замкнутом контуре, проходя через внешнюю электродную камеру 7. Вода, поступающая во внутреннею (анодную) камеру, под действием окислительно-восстановительных процессов, происходящих в обеих камерах, насыщается ионами хлорноватистой кислоты, короткоживущими кислородными радикалами, небольшим количеством озона и двуокисью хлора за счет миграции ионов от внешней (катодной) электродной камеры и выводится через патрубок 11 в виде дезинфицирующего раствора.

Пример 3

Для получения дезинфицирующего раствора через патрубок 8 подают 1-33% раствор хлорида натрия, который поступает во внешнюю катодную камеру, затем раствор выходит из патрубка 9 и через патрубок 10 поступает во внутреннюю электродную камеру. Раствор, поступающий во внутреннюю (анодную) электродную камеру под действием окислительно-восстановительных процессов, происходящих в обеих камерах, насыщается ионами хлорноватистой кислоты, короткоживущими кислородными радикалами, небольшим количеством озона и двуокисью хлора за счет миграции ионов от внешней (анодной) электродной камеры и выводится через патрубок 11 в виде дезинфицирующего раствора.

Пример 4

Для обработки питьевой воды через патрубок 8 подают воду из водопровода, которая поступает во внешнюю катодную камеру, затем вода выходит из патрубка 9 и через штуцер 10 поступает во внутреннюю электродную камеру. Вода, поступающая во внутреннею (анодную) электродную камеру под действием окислительно-восстановительных процессов происходящих в обеих камерах обеззараживается, изменяет окислительно-восстановительный потенциал и выводится через штуцер 11 в виде чистой питьевой воды.

Приведенными примерами не исчерпывается область применения заявленного устройства, так как в зависимости от используемых растворов и полярности электродов можно получать электроактивированные растворы с кислыми или щелочными свойствами, в зависимости от полярности подключения электродов. Устройство можно также использовать для обеззараживания воды, изменения окислительно-восстановительного потенциала воды, катодного умягчения воды и других целей.

Устройство, изготовленное согласно полезной модели, было испытано по известным методикам. В таблице представлены показатели его работы.

Наименование показателяЗначение
Объемная скорость протока, см3 12-140
Линейная скорость протока, см/с 25-64
Время обработки воды, с 0,3-2
Сила тока, А0,5-550
Напряжение, В12-120
Минерализация воды, г/л0,05-10
Удельное количество электричества, Кл/л15,5-150

Ресурс непрерывной работы, ч20000
Значение водородного показателя рН2-11
Значение окислительно-восстановительного потенциала, мВОт (+990) до (-600)
Периодичность промывки устройства от катодных отложений через каждые 480-960 часов работы

Как это видно из чертежа и приведенного выше описания, устройство имеет осевые патрубки для подвода/отвода обрабатываемой жидкости, что позволяет его подключать к магистрали напрямую без использования дополнительных переходников - коленных отводов. Эти же осевые патрубки (штуцеры) одновременно являются крепежными элементами, поскольку как болты накручиваются на торцевые части внутренних электродов, зажимая электроды между торцевыми крышками. Крышки выполнены идентичными с обоих торцов. Выполнение внутреннего электрода стержневым, а не трубчатым повышает надежность устройства, а также его эффективность, т.к. не позволяет жидкости проходить через электрод напрямую, вследствие чего вся поступающая жидкость подвергается обработке в полной мере.

При такой конструкции и при выполнении каналов под углом к оси устройства не образуются застойные зоны и турбулентные завихрения на входе/выходе внутренней камеры.

Применение дисковой торцевой прокладки повышает герметичность и упрощает сборку устройства.

1. Устройство для электрохимической обработки воды или водных растворов, имеющее в своем составе торцевые крышки, наружный трубчатый электрод, внутри которого коаксиально расположен внутренний электрод, кольцевая полость между ними разделена коаксиальной полупроницаемой диафрагмой на внутреннюю камеру и внешнюю камеру, каждая из которых снабжена входным и выходным патрубками, при этом входной и выходной патрубки внутренней камеры выполнены осевыми, соединены с внутренним электродом при помощи резьбового соединения и фиксируют положение торцевых крышек, а герметизация камер осуществлена при помощи кольцевых уплотнительных прокладок, отличающееся тем, что внутренний электрод выполнен стержневым, на его торцах выполнены осевые каналы для входа и/или выхода жидкости, эти каналы, открытые со стороны торца электрода, сообщаются с патрубками внутренней камеры, а с противоположной стороны - сообщаются с внутренней камерой при помощи каналов, оси которых расположены в радиальных плоскостях.

2. Устройство по п.1, отличающееся тем, что содержит торцевую прокладку в форме диска с буртиком, заглубляемым во внешнюю камеру.



 

Наверх